These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
266 related items for PubMed ID: 24633811
1. Rotaxanes synthesized through sodium-ion-templated clipping of macrocycles around nonconjugated amide and urea functionalities. Ho TH, Lai CC, Liu YH, Peng SM, Chiu SH. Chemistry; 2014 Apr 14; 20(16):4563-7. PubMed ID: 24633811 [Abstract] [Full Text] [Related]
2. Five additional macrocycles that allow Na+ ion-templated threading of guest units featuring a single urea or amide functionality. Lin YH, Lai CC, Chiu SH. Org Biomol Chem; 2014 May 14; 12(18):2907-17. PubMed ID: 24676312 [Abstract] [Full Text] [Related]
3. Sodium ions template the formation of rotaxanes from BPX26C6 and nonconjugated amide and urea functionalities. Lin YH, Lai CC, Liu YH, Peng SM, Chiu SH. Angew Chem Int Ed Engl; 2013 Sep 23; 52(39):10231-6. PubMed ID: 23939689 [No Abstract] [Full Text] [Related]
4. Synthesizing [2]Rotaxanes and [2]Catenanes through Na(+)-Templated Clipping of Macrocycles around Oligo(ethylene glycol) Units. Wu YW, Chen PN, Chang CF, Lai CC, Chiu SH. Org Lett; 2015 May 01; 17(9):2158-61. PubMed ID: 25905465 [Abstract] [Full Text] [Related]
5. Investigating the effect of macrocycle size in anion templated imidazolium-based interpenetrated and interlocked assemblies. Spence GT, White NG, Beer PD. Org Biomol Chem; 2012 Sep 28; 10(36):7282-91. PubMed ID: 22864390 [Abstract] [Full Text] [Related]
6. Conformational control of selectivity and stability in hybrid amide/urea macrocycles. Brooks SJ, García-Garrido SE, Light ME, Cole PA, Gale PA. Chemistry; 2007 Sep 28; 13(12):3320-9. PubMed ID: 17304604 [Abstract] [Full Text] [Related]
7. Control of duplex formation and columnar self-assembly with heterogeneous amide/urea macrocycles. Fischer L, Decossas M, Briand JP, Didierjean C, Guichard G. Angew Chem Int Ed Engl; 2009 Sep 28; 48(9):1625-8. PubMed ID: 19170154 [Abstract] [Full Text] [Related]
8. A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. Chao S, Romuald C, Fournel-Marotte K, Clavel C, Coutrot F. Angew Chem Int Ed Engl; 2014 Jul 01; 53(27):6914-9. PubMed ID: 24910397 [Abstract] [Full Text] [Related]
9. Efficient production of [n]rotaxanes by using template-directed clipping reactions. Wu J, Leung KC, Stoddart JF. Proc Natl Acad Sci U S A; 2007 Oct 30; 104(44):17266-71. PubMed ID: 17947382 [Abstract] [Full Text] [Related]
10. A pH-sensitive lasso-based rotaxane molecular switch. Clavel C, Romuald C, Brabet E, Coutrot F. Chemistry; 2013 Feb 25; 19(9):2982-9. PubMed ID: 23345249 [Abstract] [Full Text] [Related]
11. Synthesis of large [2]rotaxanes. The relationship between the size of the blocking group and the stability of the rotaxane. Saito S, Takahashi E, Wakatsuki K, Inoue K, Orikasa T, Sakai K, Yamasaki R, Mutoh Y, Kasama T. J Org Chem; 2013 Apr 19; 78(8):3553-60. PubMed ID: 23541290 [Abstract] [Full Text] [Related]
12. Internal and external stereoisomers of squaraine rotaxane endoperoxide: synthesis, chemical differences, and structural revision. Collins CG, Lee JM, Oliver AG, Wiest O, Smith BD. J Org Chem; 2014 Feb 07; 79(3):1120-30. PubMed ID: 24428682 [Abstract] [Full Text] [Related]
13. Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. Crowley JD, Hänni KD, Leigh DA, Slawin AM. J Am Chem Soc; 2010 Apr 14; 132(14):5309-14. PubMed ID: 20334379 [Abstract] [Full Text] [Related]
14. Na+ ion templated threading of oligo(ethylene glycol) chains through BPX26C6 allows synthesis of [2]rotaxanes under solvent-free conditions. Wu KD, Lin YH, Lai CC, Chiu SH. Org Lett; 2014 Feb 21; 16(4):1068-71. PubMed ID: 24499390 [Abstract] [Full Text] [Related]
15. Cyclic [2]pseudorotaxane tetramers consisting of two rigid rods threaded through two bis-macrocycles: copper(I)-templated synthesis and X-ray structure studies. Frey J, Tock C, Collin JP, Heitz V, Sauvage JP, Rissanen K. J Am Chem Soc; 2008 Aug 20; 130(33):11013-22. PubMed ID: 18652470 [Abstract] [Full Text] [Related]
16. Kinetic versus thermodynamic control during the formation of [2]rotaxanes by a dynamic template-directed clipping process. Horn M, Ihringer J, Glink PT, Stoddart JF. Chemistry; 2003 Sep 05; 9(17):4046-54. PubMed ID: 12953190 [Abstract] [Full Text] [Related]
17. Aggregation-induced emission behavior of a pH-controlled molecular shuttle based on a tetraphenylethene moiety. Han X, Cao M, Xu Z, Wu D, Chen Z, Wu A, Liu SH, Yin J. Org Biomol Chem; 2015 Oct 14; 13(38):9767-74. PubMed ID: 26284316 [Abstract] [Full Text] [Related]
18. Mesomorphic [2]rotaxanes: sheltering ionic cores with interlocking components. Suhan ND, Loeb SJ, Eichhorn SH. J Am Chem Soc; 2013 Jan 09; 135(1):400-8. PubMed ID: 23215351 [Abstract] [Full Text] [Related]
19. Halide selective anion recognition by an amide-triazolium axle containing [2]rotaxane. White NG, Colaço AR, Marques I, Félix V, Beer PD. Org Biomol Chem; 2014 Jul 21; 12(27):4924-31. PubMed ID: 24876069 [Abstract] [Full Text] [Related]
20. Squaraine rotaxanes with boat conformation macrocycles. Fu N, Baumes JM, Arunkumar E, Noll BC, Smith BD. J Org Chem; 2009 Sep 04; 74(17):6462-8. PubMed ID: 19639940 [Abstract] [Full Text] [Related] Page: [Next] [New Search]