These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 24636580

  • 1. Visualization of the coalescence of bismuth nanoparticles.
    Niu KY, Liao HG, Zheng H.
    Microsc Microanal; 2014 Apr; 20(2):416-24. PubMed ID: 24636580
    [Abstract] [Full Text] [Related]

  • 2. In situ TEM observation of the nucleation and growth of silver oxide nanoparticles.
    Li CM, Robertson IM, Jenkins ML, Hutchison JL, Doole RC.
    Micron; 2005 Apr; 36(1):9-15. PubMed ID: 15582473
    [Abstract] [Full Text] [Related]

  • 3. Observation of growth of metal nanoparticles.
    Liao HG, Niu K, Zheng H.
    Chem Commun (Camb); 2013 Dec 28; 49(100):11720-7. PubMed ID: 24212413
    [Abstract] [Full Text] [Related]

  • 4. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.
    Liu L, Wang H, Yi Z, Deng Q, Lin Z, Zhang X.
    Micron; 2018 Feb 28; 105():30-34. PubMed ID: 29175448
    [Abstract] [Full Text] [Related]

  • 5. Insights into the growth of bismuth nanoparticles on 2D structured BiOCl photocatalysts: an in situ TEM investigation.
    Chang X, Wang S, Qi Q, Gondal MA, Rashid SG, Gao S, Yang D, Shen K, Xu Q, Wang P.
    Dalton Trans; 2015 Sep 28; 44(36):15888-96. PubMed ID: 26279412
    [Abstract] [Full Text] [Related]

  • 6. Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy.
    Bae Y, Lim K, Kim S, Kang D, Kim BH, Kim J, Kang S, Jeon S, Cho J, Lee WB, Lee WC, Park J.
    Nano Lett; 2020 Dec 09; 20(12):8704-8710. PubMed ID: 33186041
    [Abstract] [Full Text] [Related]

  • 7. In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration.
    Yuk JM, Jeong M, Kim SY, Seo HK, Kim J, Lee JY.
    Chem Commun (Camb); 2013 Dec 21; 49(98):11479-81. PubMed ID: 24121672
    [Abstract] [Full Text] [Related]

  • 8. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation.
    Li J, Chen J, Wang H, Chen N, Wang Z, Guo L, Deepak FL.
    Adv Sci (Weinh); 2018 Jun 21; 5(6):1700992. PubMed ID: 29938178
    [Abstract] [Full Text] [Related]

  • 9. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.
    Hu J, Hong Y, Muratore C, Su M, Voevodin AA.
    Nanoscale; 2011 Sep 01; 3(9):3700-4. PubMed ID: 21796304
    [Abstract] [Full Text] [Related]

  • 10. Coalescence dynamics of platinum group metal nanoparticles revealed by liquid-phase transmission electron microscopy.
    Kim J, Kang D, Kang S, Kim BH, Park J.
    iScience; 2022 Aug 19; 25(8):104699. PubMed ID: 35880046
    [Abstract] [Full Text] [Related]

  • 11. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.
    Cheong JY, Chang JH, Kim SJ, Kim C, Seo HK, Shin JW, Yuk JM, Lee JY, Kim ID.
    Microsc Microanal; 2017 Dec 19; 23(6):1107-1115. PubMed ID: 29219802
    [Abstract] [Full Text] [Related]

  • 12. Evolution of thiol-capped gold nanoclusters into larger gold nanoparticles under electron beam irradiation.
    Kumawat MK, Thakur M, Lakkakula JR, Divakaran D, Srivastava R.
    Micron; 2017 Apr 19; 95():1-6. PubMed ID: 28119149
    [Abstract] [Full Text] [Related]

  • 13. Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM.
    Asoro MA, Kovar D, Shao-Horn Y, Allard LF, Ferreira PJ.
    Nanotechnology; 2010 Jan 15; 21(2):025701. PubMed ID: 19955618
    [Abstract] [Full Text] [Related]

  • 14. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films.
    Li Z, Wang ZL, Wang Z.
    RSC Adv; 2018 Jun 27; 8(42):23522-23528. PubMed ID: 35540301
    [Abstract] [Full Text] [Related]

  • 15. Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy.
    Qin F, Wang Z, Wang ZL.
    ACS Nano; 2016 Nov 22; 10(11):9787-9793. PubMed ID: 27648603
    [Abstract] [Full Text] [Related]

  • 16. A 'jump-to-coalescence' mechanism during nanoparticle growth revealed by in situ aberration-corrected transmission electron microscopy observations.
    Neng W, Shuang-ying L, Jun X, Martini M.
    Nanotechnology; 2016 May 20; 27(20):205605. PubMed ID: 27071654
    [Abstract] [Full Text] [Related]

  • 17. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis.
    Longo E, Avansi W, Bettini J, Andrés J, Gracia L.
    Sci Rep; 2016 Mar 16; 6():21498. PubMed ID: 26979671
    [Abstract] [Full Text] [Related]

  • 18. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution.
    Liao HG, Zheng H.
    J Am Chem Soc; 2013 Apr 03; 135(13):5038-43. PubMed ID: 23477794
    [Abstract] [Full Text] [Related]

  • 19. Coalescence between Au nanoparticles as induced by nanocurvature effect and electron beam athermal activation effect.
    Cheng L, Zhu X, Su J.
    Nanoscale; 2018 May 03; 10(17):7978-7983. PubMed ID: 29505042
    [Abstract] [Full Text] [Related]

  • 20. Coalescence of silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly.
    Grouchko M, Popov I, Uvarov V, Magdassi S, Kamyshny A.
    Langmuir; 2009 Feb 17; 25(4):2501-3. PubMed ID: 19166274
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.