These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2844 related items for PubMed ID: 24646316

  • 1. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y, Liao J, Wang D, Li G.
    Anal Chem; 2014 Apr 15; 86(8):3955-63. PubMed ID: 24646316
    [Abstract] [Full Text] [Related]

  • 2. SERS-ELISA determination of human carboxylesterase 1 using metal-organic framework doped with gold nanoparticles as SERS substrate.
    Feng J, Lu H, Yang Y, Huang W, Cheng H, Kong H, Li L.
    Mikrochim Acta; 2021 Jul 30; 188(8):280. PubMed ID: 34331134
    [Abstract] [Full Text] [Related]

  • 3. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z, Gao P, Yang L, Huang C, Li Y.
    Anal Chem; 2015 Dec 15; 87(24):12177-82. PubMed ID: 26575213
    [Abstract] [Full Text] [Related]

  • 4. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH, Li D, Simon GP, Garnier G.
    Langmuir; 2012 Jun 12; 28(23):8782-90. PubMed ID: 22594710
    [Abstract] [Full Text] [Related]

  • 5. Controlled stepwise-synthesis of core-shell Au@MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection.
    Liao J, Wang D, Liu A, Hu Y, Li G.
    Analyst; 2015 Dec 21; 140(24):8165-71. PubMed ID: 26568098
    [Abstract] [Full Text] [Related]

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 7. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y.
    Anal Bioanal Chem; 2009 Aug 07; 394(7):1747-60. PubMed ID: 19384546
    [Abstract] [Full Text] [Related]

  • 8. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
    Wei H, Rodriguez K, Renneckar S, Leng W, Vikesland PJ.
    Analyst; 2015 Aug 21; 140(16):5640-9. PubMed ID: 26133311
    [Abstract] [Full Text] [Related]

  • 9. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y, Ueno K, Misawa H.
    Small; 2011 Jan 17; 7(2):252-8. PubMed ID: 21213390
    [Abstract] [Full Text] [Related]

  • 10. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food.
    Sridhar K, Inbaraj BS, Chen BH.
    Chemosphere; 2022 Aug 17; 301():134702. PubMed ID: 35472615
    [Abstract] [Full Text] [Related]

  • 11. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S, Zhang C, Yuwen L, Chao J, Zuo X, Liu X, Song C, Fan C, Wang L.
    ACS Appl Mater Interfaces; 2014 Aug 17; 6(21):18735-41. PubMed ID: 25310705
    [Abstract] [Full Text] [Related]

  • 12. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering.
    Zhang K, Yao S, Li G, Hu Y.
    Nanoscale; 2015 Feb 14; 7(6):2659-66. PubMed ID: 25580806
    [Abstract] [Full Text] [Related]

  • 13. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K, Ji J, Li Y, Liu B.
    Anal Chem; 2014 Jul 01; 86(13):6660-5. PubMed ID: 24915488
    [Abstract] [Full Text] [Related]

  • 14. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L, Dong J, Xie W, Lu W, Tong W, Tao L, Qian W.
    Anal Chim Acta; 2013 Dec 17; 805():95-100. PubMed ID: 24296148
    [Abstract] [Full Text] [Related]

  • 15. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH.
    Anal Chem; 2014 Jul 01; 86(13):6262-7. PubMed ID: 24873535
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M, Haes AJ.
    J Am Chem Soc; 2008 Oct 29; 130(43):14273-9. PubMed ID: 18831552
    [Abstract] [Full Text] [Related]

  • 19. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots.
    Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S.
    Anal Chem; 2015 Jan 06; 87(1):663-9. PubMed ID: 25494815
    [Abstract] [Full Text] [Related]

  • 20. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M, Li Y, Zheng J, Decker E, Julian McClements D, He L.
    Analyst; 2014 Jul 07; 139(13):3352-5. PubMed ID: 24835140
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 143.