These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
290 related items for PubMed ID: 24654850
1. Identifying protein complexes by reducing noise in interaction networks. Liao B, Fu X, Cai L, Chen H. Protein Pept Lett; 2014 Jul; 21(7):688-95. PubMed ID: 24654850 [Abstract] [Full Text] [Related]
2. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure. Srihari S, Ning K, Leong HW. BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868 [Abstract] [Full Text] [Related]
3. Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme. Kritikos GD, Moschopoulos C, Vazirgiannis M, Kossida S. BMC Bioinformatics; 2011 Jun 16; 12():239. PubMed ID: 21679454 [Abstract] [Full Text] [Related]
4. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering. Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S. Artif Intell Med; 2015 Mar 16; 63(3):181-9. PubMed ID: 25765008 [Abstract] [Full Text] [Related]
5. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. Vlasblom J, Wodak SJ. BMC Bioinformatics; 2009 Mar 30; 10():99. PubMed ID: 19331680 [Abstract] [Full Text] [Related]
6. Evaluation of clustering algorithms for protein-protein interaction networks. Brohée S, van Helden J. BMC Bioinformatics; 2006 Nov 06; 7():488. PubMed ID: 17087821 [Abstract] [Full Text] [Related]
7. A density-based clustering approach for identifying overlapping protein complexes with functional preferences. Hu L, Chan KC. BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799 [Abstract] [Full Text] [Related]
8. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm. Cai B, Wang H, Zheng H, Wang H. Int J Comput Biol Drug Des; 2011 May 27; 4(3):290-306. PubMed ID: 21778561 [Abstract] [Full Text] [Related]
9. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks. Ou-Yang L, Yan H, Zhang XF. BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066 [Abstract] [Full Text] [Related]
10. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks. Xu B, Guan J. IEEE/ACM Trans Comput Biol Bioinform; 2014 Dec 01; 11(4):616-27. PubMed ID: 26356332 [Abstract] [Full Text] [Related]
11. Complex discovery from weighted PPI networks. Liu G, Wong L, Chua HN. Bioinformatics; 2009 Aug 01; 25(15):1891-7. PubMed ID: 19435747 [Abstract] [Full Text] [Related]
12. Protein complex prediction via dense subgraphs and false positive analysis. Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J. PLoS One; 2017 Aug 01; 12(9):e0183460. PubMed ID: 28937982 [Abstract] [Full Text] [Related]
13. Identifying protein complexes based on brainstorming strategy. Shen X, Zhou J, Yi L, Hu X, He T, Yang J. Methods; 2016 Nov 01; 110():44-53. PubMed ID: 27405005 [Abstract] [Full Text] [Related]
14. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure. Peng W, Wang J, Zhao B, Wang L. IEEE/ACM Trans Comput Biol Bioinform; 2015 Nov 01; 12(1):179-92. PubMed ID: 26357088 [Abstract] [Full Text] [Related]
15. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks. Wang J, Zheng W, Qian Y, Liang J. Molecules; 2017 Dec 08; 22(12):. PubMed ID: 29292776 [Abstract] [Full Text] [Related]
16. Evolutionary Graph Clustering for Protein Complex Identification. He T, Chan KCC. IEEE/ACM Trans Comput Biol Bioinform; 2018 Dec 08; 15(3):892-904. PubMed ID: 28029628 [Abstract] [Full Text] [Related]
17. Detection of protein complexes from multiple protein interaction networks using graph embedding. Liu X, Yang Z, Sang S, Lin H, Wang J, Xu B. Artif Intell Med; 2019 May 08; 96():107-115. PubMed ID: 31164203 [Abstract] [Full Text] [Related]
18. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods. Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S. Artif Intell Med; 2016 Jul 08; 71():62-9. PubMed ID: 27506132 [Abstract] [Full Text] [Related]
19. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm. Cao B, Luo J, Liang C, Wang S, Song D. Comput Biol Chem; 2015 Oct 08; 58():173-81. PubMed ID: 26298638 [Abstract] [Full Text] [Related]
20. Protein complexes discovery based on protein-protein interaction data via a regularized sparse generative network model. Zhang XF, Dai DQ, Li XX. IEEE/ACM Trans Comput Biol Bioinform; 2012 Oct 08; 9(3):857-70. PubMed ID: 22291160 [Abstract] [Full Text] [Related] Page: [Next] [New Search]