These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 24657554
1. Monitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D). Kim YS, Lee ES, Kwon HK, Kim BI. J Dent; 2014 Jun; 42(6):691-6. PubMed ID: 24657554 [Abstract] [Full Text] [Related]
2. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D). Lee ES, Kang SM, Ko HY, Kwon HK, Kim BI. J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520 [Abstract] [Full Text] [Related]
3. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials. Lee ES, de Josselin de Jong E, Jung HI, Kim BI. J Biomed Opt; 2018 Jan; 23(1):1-6. PubMed ID: 29318813 [Abstract] [Full Text] [Related]
4. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges. Azevedo MS, van de Sande FH, Romano AR, Cenci MS. Caries Res; 2011 Jan; 45(6):510-7. PubMed ID: 21967836 [Abstract] [Full Text] [Related]
5. Influence of the Inoculum Source on the Cariogenicity of in vitro Microcosm Biofilms. Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS. Caries Res; 2016 Jan; 50(2):97-103. PubMed ID: 26919718 [Abstract] [Full Text] [Related]
6. Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization. Ayoub HM, Gregory RL, Tang Q, Lippert F. J Appl Oral Sci; 2020 Jan; 28():e20190501. PubMed ID: 32236356 [Abstract] [Full Text] [Related]
7. Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm - caries model. Botelho JN, Villegas-Salinas M, Troncoso-Gajardo P, Giacaman RA, Cury JA. Braz Oral Res; 2016 May 20; 30(1):. PubMed ID: 27223133 [Abstract] [Full Text] [Related]
8. Cariogenicity of different commercially available bovine milk types in a biofilm caries model. Giacaman RA, Muñoz-Sandoval C. Pediatr Dent; 2014 May 20; 36(1):1E-6E. PubMed ID: 24717697 [Abstract] [Full Text] [Related]
9. The cariogenic effect of starch on oral microcosm grown within the dual constant depth film fermenter. Roberts JM, Bradshaw DJ, Lynch RJM, Higham SM, Valappil SP. PLoS One; 2021 May 20; 16(10):e0258881. PubMed ID: 34669730 [Abstract] [Full Text] [Related]
10. The role of human milk and sucrose on cariogenicity of microcosm biofilms. Signori C, Hartwig AD, Silva-Júnior IFD, Correa MB, Azevedo MS, Cenci MS. Braz Oral Res; 2018 Oct 11; 32():e109. PubMed ID: 30328901 [Abstract] [Full Text] [Related]
11. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model. Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA. Caries Res; 2012 Oct 11; 46(5):460-6. PubMed ID: 22759448 [Abstract] [Full Text] [Related]
12. Correlation between the cariogenic response in biofilms generated from saliva of mother/child pairs. Azevedo MS, van de Sande FH, Maske TT, Signori C, Romano AR, Cenci MS. Biofouling; 2014 Sep 11; 30(8):903-9. PubMed ID: 25184431 [Abstract] [Full Text] [Related]
13. Comparison of quantitative light-induced fluorescence (QLF) and digital imaging applied for the detection and quantification of staining and stain removal on teeth. Adeyemi AA, Jarad FD, Pender N, Higham SM. J Dent; 2006 Aug 11; 34(7):460-6. PubMed ID: 16337328 [Abstract] [Full Text] [Related]
14. Comparative study to quantify demineralized enamel in deciduous and permanent teeth using laser- and light-induced fluorescence techniques. Ando M, van Der Veen MH, Schemehorn BR, Stookey GK. Caries Res; 2001 Aug 11; 35(6):464-70. PubMed ID: 11799288 [Abstract] [Full Text] [Related]
15. An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies. van de Sande FH, Azevedo MS, Lund RG, Huysmans MC, Cenci MS. Biofouling; 2011 Oct 11; 27(9):1057-63. PubMed ID: 22044385 [Abstract] [Full Text] [Related]
16. Ecological changes in oral microcosm biofilm during maturation. Kim YS, Kang SM, Lee ES, Lee JH, Kim BR, Kim BI. J Biomed Opt; 2016 Oct 11; 21(10):101409. PubMed ID: 26950795 [Abstract] [Full Text] [Related]
17. Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque. Owens GJ, Lynch RJM, Hope CK, Cooper L, Higham SM, Valappil SP. Caries Res; 2017 Oct 11; 51(3):188-197. PubMed ID: 28245470 [Abstract] [Full Text] [Related]
18. In vitro quantitative light-induced fluorescence to measure changes in enamel mineralization. Gmür R, Giertsen E, van der Veen MH, de Josselin de Jong E, ten Cate JM, Guggenheim B. Clin Oral Investig; 2006 Sep 11; 10(3):187-95. PubMed ID: 16810532 [Abstract] [Full Text] [Related]
19. Anti-biofilm activity of chlorhexidine-releasing elastomerics against dental microcosm biofilms. Choi JH, Jung EH, Lee ES, Jung HI, Kim BI. J Dent; 2022 Jul 11; 122():104153. PubMed ID: 35526753 [Abstract] [Full Text] [Related]
20. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Giacaman RA, Campos P, Muñoz-Sandoval C, Castro RJ. Arch Oral Biol; 2013 Sep 11; 58(9):1116-22. PubMed ID: 23631998 [Abstract] [Full Text] [Related] Page: [Next] [New Search]