These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
298 related items for PubMed ID: 24666983
1. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H. J Plant Physiol; 2014 May 15; 171(9):748-69. PubMed ID: 24666983 [Abstract] [Full Text] [Related]
2. Plant HAK/KUP/KT K+ transporters: Function and regulation. Li W, Xu G, Alli A, Yu L. Semin Cell Dev Biol; 2018 Feb 15; 74():133-141. PubMed ID: 28711523 [Abstract] [Full Text] [Related]
3. Properties of shaker-type potassium channels in higher plants. Gambale F, Uozumi N. J Membr Biol; 2006 Mar 15; 210(1):1-19. PubMed ID: 16794778 [Abstract] [Full Text] [Related]
4. Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis. Gierth M, Mäser P. FEBS Lett; 2007 May 25; 581(12):2348-56. PubMed ID: 17397836 [Abstract] [Full Text] [Related]
5. Molecular mechanisms and regulation of K+ transport in higher plants. Véry AA, Sentenac H. Annu Rev Plant Biol; 2003 May 25; 54():575-603. PubMed ID: 14503004 [Abstract] [Full Text] [Related]
6. Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+ stress in Saccharum. Feng X, Wang Y, Zhang N, Wu Z, Zeng Q, Wu J, Wu X, Wang L, Zhang J, Qi Y. BMC Plant Biol; 2020 Jan 13; 20(1):20. PubMed ID: 31931714 [Abstract] [Full Text] [Related]
7. Roles and Transport of Sodium and Potassium in Plants. Nieves-Cordones M, Al Shiblawi FR, Sentenac H. Met Ions Life Sci; 2016 Jan 13; 16():291-324. PubMed ID: 26860305 [Abstract] [Full Text] [Related]
8. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica). Song ZZ, Ma RJ, Yu ML. Genet Mol Res; 2015 Jan 30; 14(1):774-87. PubMed ID: 25730015 [Abstract] [Full Text] [Related]
9. Organelle-localized potassium transport systems in plants. Hamamoto S, Uozumi N. J Plant Physiol; 2014 May 15; 171(9):743-7. PubMed ID: 24810770 [Abstract] [Full Text] [Related]
10. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Wang Y, Lü J, Chen D, Zhang J, Qi K, Cheng R, Zhang H, Zhang S. Genome; 2018 Oct 15; 61(10):755-765. PubMed ID: 30130425 [Abstract] [Full Text] [Related]
11. Diversity in expression patterns and functional properties in the rice HKT transporter family. Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA. Plant Physiol; 2009 Aug 15; 150(4):1955-71. PubMed ID: 19482918 [Abstract] [Full Text] [Related]
12. Genome-Wide Identification and Analysis of HAK/KUP/KT Potassium Transporters Gene Family in Wheat (Triticum aestivum L.). Cheng X, Liu X, Mao W, Zhang X, Chen S, Zhan K, Bi H, Xu H. Int J Mol Sci; 2018 Dec 10; 19(12):. PubMed ID: 30544665 [Abstract] [Full Text] [Related]
13. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camellia sinensis L.): expression and functional analysis. Yang T, Lu X, Wang Y, Xie Y, Ma J, Cheng X, Xia E, Wan X, Zhang Z. BMC Genomics; 2020 Aug 13; 21(1):556. PubMed ID: 32791963 [Abstract] [Full Text] [Related]
14. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H. J Biosci Bioeng; 2011 Mar 13; 111(3):346-56. PubMed ID: 21084222 [Abstract] [Full Text] [Related]
15. The twins K+ and Na+ in plants. Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. J Plant Physiol; 2014 May 15; 171(9):723-31. PubMed ID: 24810769 [Abstract] [Full Text] [Related]
16. Rice potassium transporter OsHAK18 mediates phloem K+ loading and redistribution. Shen L, Fan W, Li N, Wu Q, Chen D, Luan J, Zhang G, Tian Q, Jing W, Zhang Q, Zhang W. Plant J; 2023 Oct 15; 116(1):201-216. PubMed ID: 37381632 [Abstract] [Full Text] [Related]
17. Molecular insights into the structure and function of plant K(+) transport mechanisms. Schachtman DP. Biochim Biophys Acta; 2000 May 01; 1465(1-2):127-39. PubMed ID: 10748250 [Abstract] [Full Text] [Related]
18. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N. Proc Natl Acad Sci U S A; 2002 Apr 30; 99(9):6428-33. PubMed ID: 11959905 [Abstract] [Full Text] [Related]
19. Plant KT/KUP/HAK potassium transporters: single family - multiple functions. Grabov A. Ann Bot; 2007 Jun 30; 99(6):1035-41. PubMed ID: 17495982 [Abstract] [Full Text] [Related]
20. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum). Xu J, Tian X, Egrinya Eneji A, Li Z. Gene; 2014 Jul 15; 545(1):61-71. PubMed ID: 24802116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]