These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 24668224
1. Membrane flickering of the human erythrocyte: physical and chemical effectors. Puckeridge M, Chapman BE, Conigrave AD, Kuchel PW. Eur Biophys J; 2014 May; 43(4-5):169-77. PubMed ID: 24668224 [Abstract] [Full Text] [Related]
2. Membrane flickering of the human erythrocyte: constrained random walk used with Bayesian analysis. Puckeridge M, Kuchel PW. Eur Biophys J; 2014 May; 43(4-5):157-67. PubMed ID: 24682391 [Abstract] [Full Text] [Related]
3. Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering. Boss D, Hoffmann A, Rappaz B, Depeursinge C, Magistretti PJ, Van de Ville D, Marquet P. PLoS One; 2012 May; 7(8):e40667. PubMed ID: 22899990 [Abstract] [Full Text] [Related]
4. Human erythrocyte flickering: temperature, ATP concentration, water transport, and cell aging, plus a computer simulation. Szekely D, Yau TW, Kuchel PW. Eur Biophys J; 2009 Sep; 38(7):923-39. PubMed ID: 19484468 [Abstract] [Full Text] [Related]
5. Metabolic remodeling of the human red blood cell membrane. Park Y, Best CA, Auth T, Gov NS, Safran SA, Popescu G, Suresh S, Feld MS. Proc Natl Acad Sci U S A; 2010 Jan 26; 107(4):1289-94. PubMed ID: 20080583 [Abstract] [Full Text] [Related]
6. Competition between Li+ and Mg2+ for the phosphate groups in the human erythrocyte membrane and ATP: an NMR and fluorescence study. Mota de Freitas D, Amari L, Srinivasan C, Rong Q, Ramasamy R, Abraha A, Geraldes CF, Boyd MK. Biochemistry; 1994 Apr 12; 33(14):4101-10. PubMed ID: 8155627 [Abstract] [Full Text] [Related]
7. Light scattering of human red blood cells during metabolic remodeling of the membrane. Park Y, Best-Popescu CA, Dasari RR, Popescu G. J Biomed Opt; 2011 Apr 12; 16(1):011013. PubMed ID: 21280900 [Abstract] [Full Text] [Related]
8. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Gov NS, Safran SA. Biophys J; 2005 Mar 12; 88(3):1859-74. PubMed ID: 15613626 [Abstract] [Full Text] [Related]
9. ATP dependent primary active transport of xenobiotic-glutathione conjugates by human erythrocyte membrane. Awasthi YC, Singh SV, Ahmad H, Wronski LW, Srivastava SK, LaBelle EF. Mol Cell Biochem; 2005 Mar 12; 91(1-2):131-6. PubMed ID: 2533663 [Abstract] [Full Text] [Related]
10. Dietary Fatty Acids Affect Red Blood Cell Membrane Composition and Red Blood Cell ATP Release in Dairy Cows. Revskij D, Haubold S, Viergutz T, Kröger-Koch C, Tuchscherer A, Kienberger H, Rychlik M, Tröscher A, Hammon HM, Schuberth HJ, Mielenz M. Int J Mol Sci; 2019 Jun 05; 20(11):. PubMed ID: 31195708 [Abstract] [Full Text] [Related]
11. Morphological changes induced in erythrocyte by amyloid beta peptide and glucose depletion: A combined atomic force microscopy and biochemical study. Carelli-Alinovi C, Dinarelli S, Sampaolese B, Misiti F, Girasole M. Biochim Biophys Acta Biomembr; 2019 Jan 05; 1861(1):236-244. PubMed ID: 30040926 [Abstract] [Full Text] [Related]
12. Beta-adrenergic agonists regulate cell membrane fluctuations of human erythrocytes. Tuvia S, Moses A, Gulayev N, Levin S, Korenstein R. J Physiol; 1999 May 01; 516 ( Pt 3)(Pt 3):781-92. PubMed ID: 10200425 [Abstract] [Full Text] [Related]
13. The role of ATP in swelling-stimulated K-Cl cotransport in human red cell ghosts. Phosphorylation-dephosphorylation events are not in the signal transduction pathway. Sachs JR, Martin DW. J Gen Physiol; 1993 Sep 01; 102(3):551-73. PubMed ID: 8245823 [Abstract] [Full Text] [Related]
14. Further evidence for a membrane potential-dependent shape transformation of the human erythrocyte membrane. Müller P, Herrmann A, Glaser R. Biosci Rep; 1986 Nov 01; 6(11):999-1006. PubMed ID: 3580524 [Abstract] [Full Text] [Related]
15. Variation of frequency spectrum of the erythrocyte flickering caused by aging, osmolarity, temperature and pathological changes. Fricke K, Sackmann E. Biochim Biophys Acta; 1984 Mar 23; 803(3):145-52. PubMed ID: 6704427 [Abstract] [Full Text] [Related]
16. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability. Lux SE, John KM, Ukena TE. J Clin Invest; 1978 Mar 23; 61(3):815-27. PubMed ID: 25286 [Abstract] [Full Text] [Related]
17. Alterations of red blood cell shape and sialic acid membrane content in septic patients. Piagnerelli M, Boudjeltia KZ, Brohee D, Piro P, Carlier E, Vincent JL, Lejeune P, Vanhaeverbeek M. Crit Care Med; 2003 Aug 23; 31(8):2156-62. PubMed ID: 12973174 [Abstract] [Full Text] [Related]
18. Relationship of hemolysis buffer structure, pH and ionic strength to spontaneous contour smoothing of isolated erythrocyte membranes. Raval PJ, Carter DP, Fairbanks G. Biochim Biophys Acta; 1989 Aug 07; 983(2):230-40. PubMed ID: 2758059 [Abstract] [Full Text] [Related]
19. Detrended fluctuation analysis of membrane flickering in discocyte and spherocyte red blood cells using quantitative phase microscopy. Lee S, Lee JY, Park CS, Kim DY. J Biomed Opt; 2011 Jul 07; 16(7):076009. PubMed ID: 21806270 [Abstract] [Full Text] [Related]
20. Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton. Levin S, Korenstein R. Biophys J; 1991 Sep 07; 60(3):733-7. PubMed ID: 1932557 [Abstract] [Full Text] [Related] Page: [Next] [New Search]