These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


277 related items for PubMed ID: 24674627

  • 21. Nuclear depletion of apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is an indicator of energy disruption in neurons.
    Singh S, Englander EW.
    Free Radic Biol Med; 2012 Nov 01; 53(9):1782-90. PubMed ID: 22841870
    [Abstract] [Full Text] [Related]

  • 22. Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair.
    Odell ID, Barbour JE, Murphy DL, Della-Maria JA, Sweasy JB, Tomkinson AE, Wallace SS, Pederson DS.
    Mol Cell Biol; 2011 Nov 01; 31(22):4623-32. PubMed ID: 21930793
    [Abstract] [Full Text] [Related]

  • 23. Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease.
    Canugovi C, Shamanna RA, Croteau DL, Bohr VA.
    Neurobiol Aging; 2014 Jun 01; 35(6):1293-300. PubMed ID: 24485507
    [Abstract] [Full Text] [Related]

  • 24. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin.
    Boetefuer EL, Lake RJ, Dreval K, Fan HY.
    J Biol Chem; 2018 Nov 16; 293(46):17863-17874. PubMed ID: 30266807
    [Abstract] [Full Text] [Related]

  • 25. The role of DNA base excision repair in brain homeostasis and disease.
    Akbari M, Morevati M, Croteau D, Bohr VA.
    DNA Repair (Amst); 2015 Aug 16; 32():172-179. PubMed ID: 26002197
    [Abstract] [Full Text] [Related]

  • 26. The mitochondrial transcription factor A functions in mitochondrial base excision repair.
    Canugovi C, Maynard S, Bayne AC, Sykora P, Tian J, de Souza-Pinto NC, Croteau DL, Bohr VA.
    DNA Repair (Amst); 2010 Oct 05; 9(10):1080-9. PubMed ID: 20739229
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair.
    Leppard JB, Dong Z, Mackey ZB, Tomkinson AE.
    Mol Cell Biol; 2003 Aug 05; 23(16):5919-27. PubMed ID: 12897160
    [Abstract] [Full Text] [Related]

  • 29. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.
    Czarny P, Kwiatkowski D, Toma M, Gałecki P, Orzechowska A, Bobińska K, Bielecka-Kowalska A, Szemraj J, Berk M, Anderson G, Śliwiński T.
    Med Sci Monit; 2016 Nov 20; 22():4455-4474. PubMed ID: 27866211
    [Abstract] [Full Text] [Related]

  • 30. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage.
    Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G.
    Mol Cell Biol; 1998 Jun 20; 18(6):3563-71. PubMed ID: 9584196
    [Abstract] [Full Text] [Related]

  • 31. Long patch base excision repair in mammalian mitochondrial genomes.
    Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S.
    J Biol Chem; 2008 Sep 26; 283(39):26349-56. PubMed ID: 18635552
    [Abstract] [Full Text] [Related]

  • 32. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.
    Spadafora D, Kozhukhar N, Alexeyev MF.
    PLoS One; 2016 Sep 26; 11(3):e0152705. PubMed ID: 27031233
    [Abstract] [Full Text] [Related]

  • 33. DNA polymerase β outperforms DNA polymerase γ in key mitochondrial base excision repair activities.
    Baptiste BA, Baringer SL, Kulikowicz T, Sommers JA, Croteau DL, Brosh RM, Bohr VA.
    DNA Repair (Amst); 2021 Mar 26; 99():103050. PubMed ID: 33540226
    [Abstract] [Full Text] [Related]

  • 34. Mitochondrial base excision repair assays.
    Maynard S, de Souza-Pinto NC, Scheibye-Knudsen M, Bohr VA.
    Methods; 2010 Aug 26; 51(4):416-25. PubMed ID: 20188838
    [Abstract] [Full Text] [Related]

  • 35. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair.
    Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G.
    J Biol Chem; 1997 Sep 19; 272(38):23970-5. PubMed ID: 9295348
    [Abstract] [Full Text] [Related]

  • 36. DNA 3'-phosphatase activity is critical for rapid global rates of single-strand break repair following oxidative stress.
    Breslin C, Caldecott KW.
    Mol Cell Biol; 2009 Sep 19; 29(17):4653-62. PubMed ID: 19546231
    [Abstract] [Full Text] [Related]

  • 37. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses.
    Jun YW, Albarran E, Wilson DL, Ding J, Kool ET.
    Angew Chem Int Ed Engl; 2022 Feb 01; 61(6):e202111829. PubMed ID: 34851014
    [Abstract] [Full Text] [Related]

  • 38. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate.
    Winters TA, Russell PS, Kohli M, Dar ME, Neumann RD, Jorgensen TJ.
    Nucleic Acids Res; 1999 Jun 01; 27(11):2423-33. PubMed ID: 10325434
    [Abstract] [Full Text] [Related]

  • 39. Differential recruitment of DNA Ligase I and III to DNA repair sites.
    Mortusewicz O, Rothbauer U, Cardoso MC, Leonhardt H.
    Nucleic Acids Res; 2006 Jun 01; 34(12):3523-32. PubMed ID: 16855289
    [Abstract] [Full Text] [Related]

  • 40. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
    Hegde ML, Hazra TK, Mitra S.
    Cell Res; 2008 Jan 01; 18(1):27-47. PubMed ID: 18166975
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.