These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


332 related items for PubMed ID: 24675167

  • 1. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M, Panigrahi P, Yunguo L, Ramzan M, Ahuja R.
    Nanotechnology; 2014 Apr 25; 25(16):165703. PubMed ID: 24675167
    [Abstract] [Full Text] [Related]

  • 2. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F, Gökoğlu G, Aktürk E.
    J Phys Condens Matter; 2014 Aug 13; 26(32):325303. PubMed ID: 25049113
    [Abstract] [Full Text] [Related]

  • 3. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J, Liu HJ, Cheng L, Wei J, Liang JH, Fan DD, Shi J, Tang XF, Zhang QJ.
    Sci Rep; 2014 Sep 23; 4():6452. PubMed ID: 25245326
    [Abstract] [Full Text] [Related]

  • 4. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W, Lu P, Zhang Z, Guo W.
    ACS Appl Mater Interfaces; 2011 Dec 23; 3(12):4787-95. PubMed ID: 22039765
    [Abstract] [Full Text] [Related]

  • 5. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.
    Li Y, Zhou Z, Zhang S, Chen Z.
    J Am Chem Soc; 2008 Dec 10; 130(49):16739-44. PubMed ID: 19554733
    [Abstract] [Full Text] [Related]

  • 6. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG, Miwa RH, Srivastava GP.
    J Chem Phys; 2008 May 28; 128(20):201101. PubMed ID: 18513000
    [Abstract] [Full Text] [Related]

  • 7. Modulation of Electronic Structure of Armchair MoS2 Nanoribbon.
    Zhang L, Wan L, Yu Y, Wang B, Xu F, Wei Y, Zhao Y.
    J Phys Chem C Nanomater Interfaces; 2015 May 28; 119(38):22164-22171. PubMed ID: 26331336
    [Abstract] [Full Text] [Related]

  • 8. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.
    Lou P.
    Phys Chem Chem Phys; 2011 Oct 14; 13(38):17194-204. PubMed ID: 21879055
    [Abstract] [Full Text] [Related]

  • 9. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J, Srivastava GP.
    Nanomaterials (Basel); 2021 Feb 19; 11(2):. PubMed ID: 33669836
    [Abstract] [Full Text] [Related]

  • 10. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L, Lu J.
    Nanoscale; 2011 Jun 19; 3(6):2583-8. PubMed ID: 21552611
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX2 (X = S, Se) nanoribbons.
    Liu S, Liu Z.
    Phys Chem Chem Phys; 2018 Aug 22; 20(33):21441-21446. PubMed ID: 30087962
    [Abstract] [Full Text] [Related]

  • 15. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU, Hashmi A, Hong J.
    ACS Appl Mater Interfaces; 2015 Jul 08; 7(26):14423-30. PubMed ID: 26076899
    [Abstract] [Full Text] [Related]

  • 16. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N, Medhekar N, Shukla A.
    Phys Chem Chem Phys; 2018 Apr 18; 20(15):10345-10358. PubMed ID: 29610823
    [Abstract] [Full Text] [Related]

  • 17. Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.
    Yu G, Jiang L, Zheng Y.
    J Phys Condens Matter; 2015 Jul 01; 27(25):255006. PubMed ID: 26020446
    [Abstract] [Full Text] [Related]

  • 18. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons.
    Lin YT, Chung HC, Yang PH, Lin SY, Lin MF.
    Phys Chem Chem Phys; 2015 Jul 07; 17(25):16545-52. PubMed ID: 26051862
    [Abstract] [Full Text] [Related]

  • 19. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy.
    Shidpour R, Manteghian M.
    Nanoscale; 2010 Aug 07; 2(8):1429-35. PubMed ID: 20820730
    [Abstract] [Full Text] [Related]

  • 20. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX, Luo ZY, Mo DC, Lyu SS.
    Phys Chem Chem Phys; 2016 Jun 28; 18(24):16337-44. PubMed ID: 27254307
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.