These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 24684745

  • 1. Strategies to calculate water binding free energies in protein-ligand complexes.
    Bodnarchuk MS, Viner R, Michel J, Essex JW.
    J Chem Inf Model; 2014 Jun 23; 54(6):1623-33. PubMed ID: 24684745
    [Abstract] [Full Text] [Related]

  • 2. Classification of water molecules in protein binding sites.
    Barillari C, Taylor J, Viner R, Essex JW.
    J Am Chem Soc; 2007 Mar 07; 129(9):2577-87. PubMed ID: 17288418
    [Abstract] [Full Text] [Related]

  • 3. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.
    Woods CJ, Malaisree M, Hannongbua S, Mulholland AJ.
    J Chem Phys; 2011 Feb 07; 134(5):054114. PubMed ID: 21303099
    [Abstract] [Full Text] [Related]

  • 4. Combined quantum mechanics/molecular mechanics (QM/MM) simulations for protein-ligand complexes: free energies of binding of water molecules in influenza neuraminidase.
    Woods CJ, Shaw KE, Mulholland AJ.
    J Phys Chem B; 2015 Jan 22; 119(3):997-1001. PubMed ID: 25340313
    [Abstract] [Full Text] [Related]

  • 5. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method.
    Hamelberg D, McCammon JA.
    J Am Chem Soc; 2004 Jun 23; 126(24):7683-9. PubMed ID: 15198616
    [Abstract] [Full Text] [Related]

  • 6. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y, Roux B.
    J Chem Phys; 2008 Mar 21; 128(11):115103. PubMed ID: 18361618
    [Abstract] [Full Text] [Related]

  • 7. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M, Guarnieri F, Shkurko I, Wiseman J.
    J Chem Inf Model; 2006 Mar 21; 46(1):231-42. PubMed ID: 16426059
    [Abstract] [Full Text] [Related]

  • 8. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y, Yang CY, Wang S.
    J Am Chem Soc; 2006 Sep 13; 128(36):11830-9. PubMed ID: 16953623
    [Abstract] [Full Text] [Related]

  • 9. Grand canonical free-energy calculations of protein-ligand binding.
    Clark M, Meshkat S, Wiseman JS.
    J Chem Inf Model; 2009 Apr 13; 49(4):934-43. PubMed ID: 19309088
    [Abstract] [Full Text] [Related]

  • 10. Scoring binding affinity of multiple ligands using implicit solvent and a single molecular dynamics trajectory: application to influenza neuraminidase.
    Bonnet P, Bryce RA.
    J Mol Graph Model; 2005 Oct 13; 24(2):147-56. PubMed ID: 16098779
    [Abstract] [Full Text] [Related]

  • 11. Molecular docking with ligand attached water molecules.
    Lie MA, Thomsen R, Pedersen CN, Schiøtt B, Christensen MH.
    J Chem Inf Model; 2011 Apr 25; 51(4):909-17. PubMed ID: 21452852
    [Abstract] [Full Text] [Related]

  • 12. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT.
    J Chem Inf Model; 2013 Jun 24; 53(6):1388-405. PubMed ID: 23662606
    [Abstract] [Full Text] [Related]

  • 13. Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study.
    Bortolato A, Tehan BG, Bodnarchuk MS, Essex JW, Mason JS.
    J Chem Inf Model; 2013 Jul 22; 53(7):1700-13. PubMed ID: 23725291
    [Abstract] [Full Text] [Related]

  • 14. Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening.
    Wei D, Zheng H, Su N, Deng M, Lai L.
    J Chem Inf Model; 2010 Oct 25; 50(10):1855-64. PubMed ID: 20968314
    [Abstract] [Full Text] [Related]

  • 15. Prediction of the water content in protein binding sites.
    Michel J, Tirado-Rives J, Jorgensen WL.
    J Phys Chem B; 2009 Oct 08; 113(40):13337-46. PubMed ID: 19754086
    [Abstract] [Full Text] [Related]

  • 16. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF, Di Lella S, Guardia CM, Estrin DA, Martí MA.
    J Phys Chem B; 2009 Jun 25; 113(25):8717-24. PubMed ID: 19485380
    [Abstract] [Full Text] [Related]

  • 17. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H, Zhao L, Peng S, Huang N.
    Proteins; 2014 Sep 25; 82(9):1765-76. PubMed ID: 24549784
    [Abstract] [Full Text] [Related]

  • 18. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X, Roux B.
    J Mol Recognit; 2010 Sep 25; 23(2):128-41. PubMed ID: 20151411
    [Abstract] [Full Text] [Related]

  • 19. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S, Mikulskis P, Hu L, Kongsted J, Söderhjelm P, Ryde U.
    J Am Chem Soc; 2011 Aug 24; 133(33):13081-92. PubMed ID: 21728337
    [Abstract] [Full Text] [Related]

  • 20. Infiltration of water molecules into the oseltamivir-binding site of H274Y neuraminidase mutant causes resistance to oseltamivir.
    Park JW, Jo WH.
    J Chem Inf Model; 2009 Dec 24; 49(12):2735-41. PubMed ID: 19957991
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.