These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 24684745

  • 41. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M, Totrov M, Abagyan R.
    J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408
    [Abstract] [Full Text] [Related]

  • 42. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP.
    Bayden AS, Moustakas DT, Joseph-McCarthy D, Lamb ML.
    J Chem Inf Model; 2015 Aug 24; 55(8):1552-65. PubMed ID: 26176600
    [Abstract] [Full Text] [Related]

  • 43. A Monte Carlo sampling method of amino acid sequences adaptable to given main-chain atoms in the proteins.
    Ogata K, Soejima K, Higo J.
    J Biochem; 2006 Oct 24; 140(4):543-52. PubMed ID: 16945938
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G, Henriksen NM, Gilson MK.
    J Chem Theory Comput; 2017 Jul 11; 13(7):3260-3275. PubMed ID: 28564537
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. AcquaAlta: a directional approach to the solvation of ligand-protein complexes.
    Rossato G, Ernst B, Vedani A, Smiesko M.
    J Chem Inf Model; 2011 Aug 22; 51(8):1867-81. PubMed ID: 21714532
    [Abstract] [Full Text] [Related]

  • 50. Molecular dynamics and free energy analysis of neuraminidase-ligand interactions.
    Bonnet P, Bryce RA.
    Protein Sci; 2004 Apr 22; 13(4):946-57. PubMed ID: 15044728
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Abraham DJ, Kellogg GE.
    J Med Chem; 2004 Aug 26; 47(18):4507-16. PubMed ID: 15317462
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Computational approach to de novo discovery of fragment binding for novel protein states.
    Konteatis ZD, Klon AE, Zou J, Meshkat S.
    Methods Enzymol; 2011 Aug 26; 493():357-80. PubMed ID: 21371598
    [Abstract] [Full Text] [Related]

  • 55. Ligand-protein docking with water molecules.
    Roberts BC, Mancera RL.
    J Chem Inf Model; 2008 Feb 26; 48(2):397-408. PubMed ID: 18211049
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Grand canonical Monte Carlo simulations of water in protein environments.
    Woo HJ, Dinner AR, Roux B.
    J Chem Phys; 2004 Oct 01; 121(13):6392-400. PubMed ID: 15446937
    [Abstract] [Full Text] [Related]

  • 58. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y, Wych DC, Samways ML, Wall ME, Essex JW, Mobley DL.
    J Chem Theory Comput; 2022 Mar 08; 18(3):1359-1381. PubMed ID: 35148093
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.