These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
542 related items for PubMed ID: 24687011
1. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE. Br J Sports Med; 2015 Jan; 49(2):118-22. PubMed ID: 24687011 [Abstract] [Full Text] [Related]
2. A predictive model to estimate knee-abduction moment: implications for development of a clinically applicable patellofemoral pain screening tool in female athletes. Myer GD, Ford KR, Foss KD, Rauh MJ, Paterno MV, Hewett TE. J Athl Train; 2014 Jan; 49(3):389-98. PubMed ID: 24762234 [Abstract] [Full Text] [Related]
4. Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Br J Sports Med; 2011 Apr; 45(4):245-52. PubMed ID: 20558526 [Abstract] [Full Text] [Related]
5. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P. Am J Sports Med; 2005 Apr; 33(4):492-501. PubMed ID: 15722287 [Abstract] [Full Text] [Related]
6. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Am J Sports Med; 2010 Oct; 38(10):2025-33. PubMed ID: 20595554 [Abstract] [Full Text] [Related]
7. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study. Smeets A, Malfait B, Dingenen B, Robinson MA, Vanrenterghem J, Peers K, Nijs S, Vereecken S, Staes F, Verschueren S. Knee; 2019 Jan; 26(1):40-51. PubMed ID: 30415973 [Abstract] [Full Text] [Related]
9. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lázaro-Haro C, Cugat R. Knee Surg Sports Traumatol Arthrosc; 2009 Jul; 17(7):705-29. PubMed ID: 19452139 [Abstract] [Full Text] [Related]
10. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Hewett TE, Torg JS, Boden BP. Br J Sports Med; 2009 Jun; 43(6):417-22. PubMed ID: 19372088 [Abstract] [Full Text] [Related]
11. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Am J Sports Med; 2016 Feb; 44(2):355-61. PubMed ID: 26646514 [Abstract] [Full Text] [Related]
14. Biomechanical features of drop vertical jump are different among various sporting activities. Harato K, Morishige Y, Kobayashi S, Niki Y, Nagura T. BMC Musculoskelet Disord; 2022 Apr 08; 23(1):331. PubMed ID: 35395841 [Abstract] [Full Text] [Related]
15. Three-dimensional motion analysis validation of a clinic-based nomogram designed to identify high ACL injury risk in female athletes. Myer GD, Ford KR, Khoury J, Hewett TE. Phys Sportsmed; 2011 Feb 08; 39(1):19-28. PubMed ID: 21378483 [Abstract] [Full Text] [Related]
16. Effects of sports injury prevention training on the biomechanical risk factors of anterior cruciate ligament injury in high school female basketball players. Lim BO, Lee YS, Kim JG, An KO, Yoo J, Kwon YH. Am J Sports Med; 2009 Sep 08; 37(9):1728-34. PubMed ID: 19561174 [Abstract] [Full Text] [Related]
17. Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Clin Biomech (Bristol); 2010 Aug 08; 25(7):693-9. PubMed ID: 20554101 [Abstract] [Full Text] [Related]
18. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing. Favre J, Clancy C, Dowling AV, Andriacchi TP. Am J Sports Med; 2016 Jun 08; 44(6):1540-6. PubMed ID: 26983457 [Abstract] [Full Text] [Related]
19. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program. Thompson-Kolesar JA, Gatewood CT, Tran AA, Silder A, Shultz R, Delp SL, Dragoo JL. Am J Sports Med; 2018 Mar 08; 46(3):598-606. PubMed ID: 29281799 [Abstract] [Full Text] [Related]
20. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Numata H, Nakase J, Kitaoka K, Shima Y, Oshima T, Takata Y, Shimozaki K, Tsuchiya H. Knee Surg Sports Traumatol Arthrosc; 2018 Feb 08; 26(2):442-447. PubMed ID: 28840276 [Abstract] [Full Text] [Related] Page: [Next] [New Search]