These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 24687863

  • 21. Solution-phase synthesis of inorganic hollow structures by templating strategies.
    Ma Y, Qi L.
    J Colloid Interface Sci; 2009 Jul 01; 335(1):1-10. PubMed ID: 19394632
    [Abstract] [Full Text] [Related]

  • 22. Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries.
    Liang J, Yu XY, Zhou H, Wu HB, Ding S, Lou XW.
    Angew Chem Int Ed Engl; 2014 Nov 17; 53(47):12803-7. PubMed ID: 25251871
    [Abstract] [Full Text] [Related]

  • 23. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L, Chen Q.
    Nanoscale; 2014 Nov 17; 6(3):1236-57. PubMed ID: 24356788
    [Abstract] [Full Text] [Related]

  • 24. Metal-organic-frameworks-derived general formation of hollow structures with high complexity.
    Zhang L, Wu HB, Lou XW.
    J Am Chem Soc; 2013 Jul 24; 135(29):10664-72. PubMed ID: 23805894
    [Abstract] [Full Text] [Related]

  • 25. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG, Henkelman G, Stevenson KJ.
    Acc Chem Res; 2013 May 21; 46(5):1104-12. PubMed ID: 23425042
    [Abstract] [Full Text] [Related]

  • 26. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.
    Ding YL, Wen Y, van Aken PA, Maier J, Yu Y.
    Nanoscale; 2014 Oct 07; 6(19):11411-8. PubMed ID: 25148613
    [Abstract] [Full Text] [Related]

  • 27. A unique hollow Li3VO4/carbon nanotube composite anode for high rate long-life lithium-ion batteries.
    Li Q, Sheng J, Wei Q, An Q, Wei X, Zhang P, Mai L.
    Nanoscale; 2014 Oct 07; 6(19):11072-7. PubMed ID: 25155363
    [Abstract] [Full Text] [Related]

  • 28. Lithium silicide nanocrystals: synthesis, chemical stability, thermal stability, and carbon encapsulation.
    Cloud JE, Wang Y, Li X, Yoder TS, Yang Y, Yang Y.
    Inorg Chem; 2014 Oct 20; 53(20):11289-97. PubMed ID: 25265365
    [Abstract] [Full Text] [Related]

  • 29. Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries.
    Cho JS, Hong YJ, Lee JH, Kang YC.
    Nanoscale; 2015 May 14; 7(18):8361-7. PubMed ID: 25899089
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries.
    Wang C, Li Q, Wang F, Xia G, Liu R, Li D, Li N, Spendelow JS, Wu G.
    ACS Appl Mater Interfaces; 2014 Jan 22; 6(2):1243-50. PubMed ID: 24377276
    [Abstract] [Full Text] [Related]

  • 32. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.
    Pan J, Zhong L, Li M, Luo Y, Li G.
    Chemistry; 2016 Jan 22; 22(4):1461-6. PubMed ID: 26749240
    [Abstract] [Full Text] [Related]

  • 33. Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries.
    Jiang ZJ, Jiang Z.
    ACS Appl Mater Interfaces; 2014 Nov 12; 6(21):19082-91. PubMed ID: 25310365
    [Abstract] [Full Text] [Related]

  • 34. Clewlike ZnV2O4 hollow spheres: nonaqueous sol-gel synthesis, formation mechanism, and lithium storage properties.
    Xiao L, Zhao Y, Yin J, Zhang L.
    Chemistry; 2009 Sep 21; 15(37):9442-50. PubMed ID: 19672904
    [Abstract] [Full Text] [Related]

  • 35. Fabrication of High-Energy Li-Ion Cells with Li4 Ti5 O12 Microspheres as Anode and 0.5 Li2 MnO3 ⋅0.5 LiNi0.4 Co0.2 Mn0.4 O2 Microspheres as Cathode.
    Dai C, Ye J, Zhao S, He P, Zhou H.
    Chem Asian J; 2016 Apr 20; 11(8):1273-80. PubMed ID: 26918412
    [Abstract] [Full Text] [Related]

  • 36. Lithium-Battery Anode Gains Additional Functionality for Neuromorphic Computing through Metal-Insulator Phase Separation.
    Gonzalez-Rosillo JC, Balaish M, Hood ZD, Nadkarni N, Fraggedakis D, Kim KJ, Mullin KM, Pfenninger R, Bazant MZ, Rupp JLM.
    Adv Mater; 2020 Mar 20; 32(9):e1907465. PubMed ID: 31958189
    [Abstract] [Full Text] [Related]

  • 37. A strategy to synthesize hollow micro/nanospheres with tunable shell thickness.
    Yang G, Cui H, Wang C.
    Chemphyschem; 2014 Feb 03; 15(2):374-81. PubMed ID: 24376094
    [Abstract] [Full Text] [Related]

  • 38. Rational design of carbon network cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries.
    Wen Z, Lu G, Cui S, Kim H, Ci S, Jiang J, Hurley PT, Chen J.
    Nanoscale; 2014 Jan 07; 6(1):342-51. PubMed ID: 24196865
    [Abstract] [Full Text] [Related]

  • 39. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L, Zhu Y, Guo C, Zhu X, Liang J, Qian Y.
    ChemSusChem; 2014 Jan 07; 7(1):87-91. PubMed ID: 24339264
    [Abstract] [Full Text] [Related]

  • 40. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y, Lu Z, Zhou L, Mai YW, Huang H.
    Nanoscale; 2012 Nov 07; 4(21):6800-5. PubMed ID: 23000946
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.