These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


638 related items for PubMed ID: 24691168

  • 1. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M, Penders J, Vullers R, Amft O.
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [Abstract] [Full Text] [Related]

  • 2. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N, Browning RC, Sazonov E.
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [Abstract] [Full Text] [Related]

  • 3. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M, Penders J, Vullers R, Amft O.
    Methods Inf Med; 2014 Jul; 53(5):382-8. PubMed ID: 25245124
    [Abstract] [Full Text] [Related]

  • 4. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A, Santín-Medeiros F, Cardon G, Torres-Luque G, Bailón R, Bergmeir C, Ruiz JR, Lucia A, Garatachea N.
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S.
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L, Bourke AK, Nelson J.
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M, Guo Y, Qin Y, Wang Y.
    Biomed Mater Eng; 2015 Jun; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [Abstract] [Full Text] [Related]

  • 12. Single-accelerometer-based daily physical activity classification.
    Long X, Yin B, Aarts RM.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jun; 2009():6107-10. PubMed ID: 19965261
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH, Mudd LM, Biswas S, Pfeiffer KA.
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Genetic algorithm-based classifiers fusion for multisensor activity recognition of elderly people.
    Chernbumroong S, Cang S, Yu H.
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):282-9. PubMed ID: 24771599
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
    Qiao Wang, Lohit S, Toledo MJ, Buman MP, Turaga P.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.