These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
367 related items for PubMed ID: 24692065
1. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Wu Y, Peterson VK, Luks E, Darwish TA, Kepert CJ. Angew Chem Int Ed Engl; 2014 May 12; 53(20):5175-8. PubMed ID: 24692065 [Abstract] [Full Text] [Related]
2. Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. Lock N, Christensen M, Wu Y, Peterson VK, Thomsen MK, Piltz RO, Ramirez-Cuesta AJ, McIntyre GJ, Norén K, Kutteh R, Kepert CJ, Kearley GJ, Iversen BB. Dalton Trans; 2013 Feb 14; 42(6):1996-2007. PubMed ID: 23044752 [Abstract] [Full Text] [Related]
3. Tetrazine chromophore-based metal-organic frameworks with unusual configurations: synthetic, structural, theoretical, fluorescent, and nonlinear optical studies. Li J, Jia D, Meng S, Zhang J, Cifuentes MP, Humphrey MG, Zhang C. Chemistry; 2015 May 18; 21(21):7914-26. PubMed ID: 25877804 [Abstract] [Full Text] [Related]
4. 3D negative thermal expansion in orthorhombic MIL-68(In). Liu Z, Li Q, Zhu H, Lin K, Deng J, Chen J, Xing X. Chem Commun (Camb); 2018 May 31; 54(45):5712-5715. PubMed ID: 29774355 [Abstract] [Full Text] [Related]
5. Construction of Interpenetrated Ruthenium Metal-Organic Frameworks as Stable Photocatalysts for CO2 Reduction. Zhang S, Li L, Zhao S, Sun Z, Luo J. Inorg Chem; 2015 Sep 08; 54(17):8375-9. PubMed ID: 26347291 [Abstract] [Full Text] [Related]
6. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Prasad TK, Suh MP. Chemistry; 2012 Jul 09; 18(28):8673-80. PubMed ID: 22678955 [Abstract] [Full Text] [Related]
12. Effect of gas pressure on negative thermal expansion in MOF-5. Lock N, Christensen M, Kepert CJ, Iversen BB. Chem Commun (Camb); 2013 Jan 28; 49(8):789-91. PubMed ID: 23235693 [Abstract] [Full Text] [Related]
13. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. Hafizovic J, Bjørgen M, Olsbye U, Dietzel PD, Bordiga S, Prestipino C, Lamberti C, Lillerud KP. J Am Chem Soc; 2007 Mar 28; 129(12):3612-20. PubMed ID: 17341071 [Abstract] [Full Text] [Related]
14. Interpenetrated Metal-Organic Frameworks with ftw Topology and Versatile Functions. Duan Z, Li Y, Xiao X, Huang X, Li X, Li Y, Zhang C, Zhang H, Li L, Lin Z, Zhao Y, Huang W. ACS Appl Mater Interfaces; 2020 Apr 22; 12(16):18715-18722. PubMed ID: 32233389 [Abstract] [Full Text] [Related]
15. Tuning the topology and functionality of metal-organic frameworks by ligand design. Zhao D, Timmons DJ, Yuan D, Zhou HC. Acc Chem Res; 2011 Feb 15; 44(2):123-33. PubMed ID: 21126015 [Abstract] [Full Text] [Related]
17. Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)6 Prussian Blue Analogues. Gao Q, Shi N, Sun Q, Sanson A, Milazzo R, Carnera A, Zhu H, Lapidus SH, Ren Y, Huang Q, Chen J, Xing X. Inorg Chem; 2018 Sep 04; 57(17):10918-10924. PubMed ID: 30106577 [Abstract] [Full Text] [Related]
19. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Wang Z, Tanabe KK, Cohen SM. Inorg Chem; 2009 Jan 05; 48(1):296-306. PubMed ID: 19053339 [Abstract] [Full Text] [Related]
20. Tunable anisotropic thermal expansion of a porous zinc(II) metal-organic framework. Grobler I, Smith VJ, Bhatt PM, Herbert SA, Barbour LJ. J Am Chem Soc; 2013 May 01; 135(17):6411-4. PubMed ID: 23581524 [Abstract] [Full Text] [Related] Page: [Next] [New Search]