These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


278 related items for PubMed ID: 24695868

  • 1. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.
    Tankam P, Santhanam AP, Lee KS, Won J, Canavesi C, Rolland JP.
    J Biomed Opt; 2014 Jul; 19(7):71410. PubMed ID: 24695868
    [Abstract] [Full Text] [Related]

  • 2. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.
    Rolland JP, Canavesi C, Tankam P, Cogliati A, Lanis M, Santhanam AP.
    Stud Health Technol Inform; 2016 Jul; 220():335-40. PubMed ID: 27046601
    [Abstract] [Full Text] [Related]

  • 3. Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units.
    Sylwestrzak M, Szlag D, Szkulmowski M, Gorczynska I, Bukowska D, Wojtkowski M, Targowski P.
    J Biomed Opt; 2012 Oct; 17(10):100502. PubMed ID: 23042477
    [Abstract] [Full Text] [Related]

  • 4. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J, Bloch P, Xu J, Sarunic MV, Shannon L.
    Appl Opt; 2011 May 01; 50(13):1832-8. PubMed ID: 21532660
    [Abstract] [Full Text] [Related]

  • 5. High-speed processing architecture for spectral-domain optical coherence microscopy.
    Chelliyil RG, Ralston TS, Marks DL, Boppart SA.
    J Biomed Opt; 2008 May 01; 13(4):044013. PubMed ID: 19021341
    [Abstract] [Full Text] [Related]

  • 6. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.
    Xu D, Huang Y, Kang JU.
    Opt Express; 2014 Jun 16; 22(12):14871-84. PubMed ID: 24977582
    [Abstract] [Full Text] [Related]

  • 7. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS, Xia J, Muyan-Ozcelik P, Owens JD.
    Med Phys; 2008 Aug 16; 35(8):3546-53. PubMed ID: 18777915
    [Abstract] [Full Text] [Related]

  • 8. Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
    Meemon P, Lenaphet Y, Widjaja J.
    Appl Opt; 2021 Mar 01; 60(7):2069-2076. PubMed ID: 33690300
    [Abstract] [Full Text] [Related]

  • 9. Spectral fusing Gabor domain optical coherence microscopy.
    Meemon P, Widjaja J, Rolland JP.
    Opt Lett; 2016 Feb 01; 41(3):508-11. PubMed ID: 26907410
    [Abstract] [Full Text] [Related]

  • 10. Quantitative assessment of human donor corneal endothelium with Gabor domain optical coherence microscopy.
    Yoon C, Mietus A, Qi Y, Stone J, Escudero J, Canavesi C, Tankam P, Hindman H, Rolland J.
    J Biomed Opt; 2019 Aug 01; 24(8):1-9. PubMed ID: 31389221
    [Abstract] [Full Text] [Related]

  • 11. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system].
    Liu Q, Li Y, Xu Q, Zhao J, Wang L, Gao Y.
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan 01; 37(1):1-5. PubMed ID: 23668032
    [Abstract] [Full Text] [Related]

  • 12. A review of GPU-based medical image reconstruction.
    Després P, Jia X.
    Phys Med; 2017 Oct 01; 42():76-92. PubMed ID: 29173924
    [Abstract] [Full Text] [Related]

  • 13. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.
    Zhang K, Kang JU.
    Opt Express; 2010 May 24; 18(11):11772-84. PubMed ID: 20589038
    [Abstract] [Full Text] [Related]

  • 14. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y, Itagaki T.
    J Biomed Opt; 2009 May 24; 14(6):060506. PubMed ID: 20059237
    [Abstract] [Full Text] [Related]

  • 15. Performance-aware programming for intraoperative intensity-based image registration on graphics processing units.
    Leong MCW, Lee KH, Kwan BPY, Ng YL, Liu Z, Navab N, Luk W, Kwok KW.
    Int J Comput Assist Radiol Surg; 2021 Mar 24; 16(3):375-386. PubMed ID: 33484431
    [Abstract] [Full Text] [Related]

  • 16. Compressed sensing MRI reconstruction from 3D multichannel data using GPUs.
    Chang CH, Yu X, Ji JX.
    Magn Reson Med; 2017 Dec 24; 78(6):2265-2274. PubMed ID: 28198568
    [Abstract] [Full Text] [Related]

  • 17. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
    Neylon J, Sheng K, Yu V, Chen Q, Low DA, Kupelian P, Santhanam A.
    Med Phys; 2014 Oct 24; 41(10):101711. PubMed ID: 25281950
    [Abstract] [Full Text] [Related]

  • 18. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit.
    Watanabe Y.
    J Biomed Opt; 2012 May 24; 17(5):050503. PubMed ID: 22612118
    [Abstract] [Full Text] [Related]

  • 19. Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy.
    Lee KS, Zhao H, Ibrahim SF, Meemon N, Khoudeir L, Rolland JP.
    J Biomed Opt; 2012 Dec 24; 17(12):126006. PubMed ID: 23208217
    [Abstract] [Full Text] [Related]

  • 20. Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation.
    Gao M, Si G, Bai Y, Wang LV, Liu C, Meng J.
    Appl Opt; 2020 Jan 20; 59(3):712-719. PubMed ID: 32225199
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.