These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
241 related items for PubMed ID: 24697502
1. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation. Mallik S, Kundu S. J Biomol Struct Dyn; 2015; 33(3):639-56. PubMed ID: 24697502 [Abstract] [Full Text] [Related]
2. Sequence and structural conservation in RNA ribose zippers. Tamura M, Holbrook SR. J Mol Biol; 2002 Jul 12; 320(3):455-74. PubMed ID: 12096903 [Abstract] [Full Text] [Related]
3. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation. Mallik S, Kundu S. PLoS One; 2013 Jul 12; 8(8):e69898. PubMed ID: 23940533 [Abstract] [Full Text] [Related]
4. High-resolution structures of large ribosomal subunits from mesophilic eubacteria and halophilic archaea at various functional States. Yonath A. Curr Protein Pept Sci; 2002 Feb 12; 3(1):67-78. PubMed ID: 12370012 [Abstract] [Full Text] [Related]
5. Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Réblová K, Rázga F, Li W, Gao H, Frank J, Sponer J. Nucleic Acids Res; 2010 Mar 12; 38(4):1325-40. PubMed ID: 19952067 [Abstract] [Full Text] [Related]
7. Secondary structures of rRNAs from all three domains of life. Petrov AS, Bernier CR, Gulen B, Waterbury CC, Hershkovits E, Hsiao C, Harvey SC, Hud NV, Fox GE, Wartell RM, Williams LD. PLoS One; 2014 Mar 12; 9(2):e88222. PubMed ID: 24505437 [Abstract] [Full Text] [Related]
14. Structure of the L1 protuberance in the ribosome. Nikulin A, Eliseikina I, Tishchenko S, Nevskaya N, Davydova N, Platonova O, Piendl W, Selmer M, Liljas A, Drygin D, Zimmermann R, Garber M, Nikonov S. Nat Struct Biol; 2003 Feb 16; 10(2):104-8. PubMed ID: 12514741 [Abstract] [Full Text] [Related]
15. Characterization of Regulatory Elements of L11 and L1 Operons in Thermophilic Bacteria and Archaea. Mikhaylina AO, Nikonova EY, Kostareva OS, Piendl W, Erlacher M, Tishchenko SV. Biochemistry (Mosc); 2021 Apr 16; 86(4):397-408. PubMed ID: 33941062 [Abstract] [Full Text] [Related]
16. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Yonath A. Annu Rev Biophys Biomol Struct; 2002 Apr 16; 31():257-73. PubMed ID: 11988470 [Abstract] [Full Text] [Related]
18. Structural basis for altering the stability of homologous RNAs from a mesophilic and a thermophilic bacterium. Baird NJ, Srividya N, Krasilnikov AS, Mondragón A, Sosnick TR, Pan T. RNA; 2006 Apr 16; 12(4):598-606. PubMed ID: 16581805 [Abstract] [Full Text] [Related]
19. Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Gabdulkhakov A, Nikonov S, Garber M. Acta Crystallogr D Biol Crystallogr; 2013 Jun 16; 69(Pt 6):997-1004. PubMed ID: 23695244 [Abstract] [Full Text] [Related]
20. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. Lee JC, Gutell RR. J Mol Biol; 2004 Dec 10; 344(5):1225-49. PubMed ID: 15561141 [Abstract] [Full Text] [Related] Page: [Next] [New Search]