These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 24698562
21. Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality. Tsai JY, Pan W, Lemaire SA, Pisklak P, Lee VV, Bracey AW, Elayda MA, Preventza O, Price MD, Collard CD, Coselli JS. J Thorac Cardiovasc Surg; 2013 Sep; 146(3):662-7. PubMed ID: 23558304 [Abstract] [Full Text] [Related]
22. Valproic acid prevents brain injury in a canine model of hypothermic circulatory arrest: a promising new approach to neuroprotection during cardiac surgery. Williams JA, Barreiro CJ, Nwakanma LU, Lange MS, Kratz LE, Blue ME, Berrong J, Patel ND, Gott VL, Troncoso JC, Johnston MV, Baumgartner WA. Ann Thorac Surg; 2006 Jun; 81(6):2235-41; discussion 2241-2. PubMed ID: 16731160 [Abstract] [Full Text] [Related]
23. Low postoperative hematocrit increases cerebrovascular damage after hypothermic circulatory arrest. Shum-Tim D, MacDonald D, Takayuki S, Laliberté E, Chen J, Jamal AM, Philip A, Platt R. Pediatr Crit Care Med; 2005 May; 6(3):319-26. PubMed ID: 15857532 [Abstract] [Full Text] [Related]
24. Effect of profound hypothermia during circulatory arrest on neurologic injury and apoptotic repressor protein Bcl-2 expression in an acute porcine model. Ananiadou OG, Bibou K, Drossos GE, Charchanti A, Bai M, Haj-Yahia S, Anagnostopoulos CE, Johnson EO. J Thorac Cardiovasc Surg; 2007 Apr; 133(4):919-26. PubMed ID: 17382626 [Abstract] [Full Text] [Related]
25. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets. Schultz S, Antoni D, Shears G, Markowitz S, Pastuszko P, Greeley W, Wilson DF, Pastuszko A. J Thorac Cardiovasc Surg; 2006 Oct; 132(4):839-44. PubMed ID: 17000295 [Abstract] [Full Text] [Related]
26. Emergency preservation and delayed resuscitation allows normal recovery after exsanguination cardiac arrest in rats: a feasibility trial. Drabek T, Stezoski J, Garman RH, Wu X, Tisherman SA, Stezoski SW, Fisk JA, Jenkins L, Kochanek PM. Crit Care Med; 2007 Feb; 35(2):532-7. PubMed ID: 17205010 [Abstract] [Full Text] [Related]
27. The effect of limited rewarming and postoperative hypothermia on cognitive function in a rat cardiopulmonary bypass model. de Lange F, Jones WL, Mackensen GB, Grocott HP. Anesth Analg; 2008 Mar; 106(3):739-45, table of contents. PubMed ID: 18292411 [Abstract] [Full Text] [Related]
28. Upregulation of hypoxia inducible factor is associated with attenuation of neuronal injury in neonatal piglets undergoing deep hypothermic circulatory arrest. Kerendi F, Halkos ME, Kin H, Corvera JS, Brat DJ, Wagner MB, Vinten-Johansen J, Zhao ZQ, Forbess JM, Kanter KR, Kelley ME, Kirshbom PM. J Thorac Cardiovasc Surg; 2005 Oct; 130(4):1079. PubMed ID: 16214523 [Abstract] [Full Text] [Related]
29. A comparison of the effects on neuronal Golgi morphology, assessed with electron microscopy, of cardiopulmonary bypass, low-flow bypass, and circulatory arrest during profound hypothermia. Scheller MS, Branson PJ, Cornacchia LG, Alksne JF. J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1396-404. PubMed ID: 1434722 [Abstract] [Full Text] [Related]
30. Neurologic recovery after deep hypothermic circulatory arrest in rats: A description of a long-term survival model without blood priming. Liu M, Zeng Q, Li Y, Liu G, Ji B. Artif Organs; 2019 Jun; 43(6):551-560. PubMed ID: 30536407 [Abstract] [Full Text] [Related]
31. Prolonged deep hypothermic circulatory arrest in rats can be achieved without cognitive deficits. Drabek T, Fisk JA, Dixon CE, Garman RH, Stezoski J, Wisnewski SR, Wu X, Tisherman SA, Kochanek PM. Life Sci; 2007 Jul 26; 81(7):543-52. PubMed ID: 17658556 [Abstract] [Full Text] [Related]
32. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children. Greeley WJ, Ungerleider RM, Smith LR, Reves JG. J Thorac Cardiovasc Surg; 1989 May 26; 97(5):737-45. PubMed ID: 2709864 [Abstract] [Full Text] [Related]
33. Levosimendan is superior to epinephrine in improving myocardial function after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. Rungatscher A, Linardi D, Tessari M, Menon T, Luciani GB, Mazzucco A, Faggian G. J Thorac Cardiovasc Surg; 2012 Jan 26; 143(1):209-14. PubMed ID: 22014715 [Abstract] [Full Text] [Related]
34. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. Kajimoto M, Ledee DR, Olson AK, Isern NG, Robillard-Frayne I, Des Rosiers C, Portman MA. J Cereb Blood Flow Metab; 2016 Nov 26; 36(11):1992-2004. PubMed ID: 27604310 [Abstract] [Full Text] [Related]
35. Lamotrigine improves cerebral outcome after hypothermic circulatory arrest: a study in a chronic porcine model. Anttila V, Rimpiläinen J, Pokela M, Kiviluoma K, Mäkiranta M, Jäntti V, Vainionpää V, Hirvonen J, Juvonen T. J Thorac Cardiovasc Surg; 2000 Aug 26; 120(2):247-55. PubMed ID: 10917938 [Abstract] [Full Text] [Related]
36. Functional outcome in female rats after 45 minutes of deep hypothermic circulatory arrest: gender matters. Kellermann K, Gordan LM, Blobner M, Luppa P, Kochs EF, Jungwirth B. Thorac Cardiovasc Surg; 2013 Jan 26; 61(1):52-65. PubMed ID: 23307276 [Abstract] [Full Text] [Related]
37. A novel rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming. Zhang W, Zhang Y, Liu D, Zhu Y, Qiao C, Wang J, Xu Y, Liu Y, Li B, Yang Y. Chin Med J (Engl); 2014 Jan 26; 127(7):1317-20. PubMed ID: 24709187 [Abstract] [Full Text] [Related]
38. Fast rewarming after deep hypothermic circulatory arrest in rats impairs histologic outcome and increases NFκB expression in the brain. Gordan ML, Kellermann K, Blobner M, Nollert G, Kochs EF, Jungwirth B. Perfusion; 2010 Sep 26; 25(5):349-54. PubMed ID: 20647245 [Abstract] [Full Text] [Related]
39. Is selective antegrade cerebral perfusion superior to retrograde cerebral perfusion for brain protection during deep hypothermic circulatory arrest? Metabolic evidence from microdialysis. Liang MY, Tang ZX, Chen GX, Rong J, Yao JP, Chen Z, Wu ZK. Crit Care Med; 2014 May 26; 42(5):e319-28. PubMed ID: 24561569 [Abstract] [Full Text] [Related]
40. Antegrade cerebral perfusion reduces apoptotic neuronal injury in a neonatal piglet model of cardiopulmonary bypass. Chock VY, Amir G, Davis CR, Ramamoorthy C, Riemer RK, Ray D, Giffard RG, Reddy VM. J Thorac Cardiovasc Surg; 2006 Mar 26; 131(3):659-65. PubMed ID: 16515920 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]