These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


513 related items for PubMed ID: 2470102

  • 21. Sites of antagonist action on N-methyl-D-aspartic acid receptors studied using fluctuation analysis and a rapid perfusion technique.
    Mayer ML, Westbrook GL, Vyklický L.
    J Neurophysiol; 1988 Aug; 60(2):645-63. PubMed ID: 2902200
    [Abstract] [Full Text] [Related]

  • 22. Synaptic transmission between rat cerebellar granule and Purkinje cells in dissociated cell culture: effects of excitatory-amino acid transmitter antagonists.
    Hirano T, Hagiwara S.
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):934-8. PubMed ID: 2893380
    [Abstract] [Full Text] [Related]

  • 23. Selective loss of Purkinje and granule cell responsiveness to N-methyl-D-aspartate in rat cerebellum during development.
    Garthwaite G, Yamini B, Garthwaite J.
    Brain Res; 1987 Dec 01; 433(2):288-92. PubMed ID: 3319048
    [Abstract] [Full Text] [Related]

  • 24. Quisqualate and N-methyl-D-aspartate synergistically excite cerebellar Purkinje cells as a long-term effect.
    Smith SS.
    Neurosci Lett; 1989 Dec 15; 107(1-3):63-9. PubMed ID: 2575731
    [Abstract] [Full Text] [Related]

  • 25. Bicuculline- and phaclofen-sensitive components of N-methyl-D-aspartate-induced hyperpolarizations in rat dorsolateral septal nucleus neurones.
    Gallagher JP, Hasuo H.
    J Physiol; 1989 Nov 15; 418():367-77. PubMed ID: 2576067
    [Abstract] [Full Text] [Related]

  • 26. Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead.
    Alkondon M, Costa AC, Radhakrishnan V, Aronstam RS, Albuquerque EX.
    FEBS Lett; 1990 Feb 12; 261(1):124-30. PubMed ID: 1689669
    [Abstract] [Full Text] [Related]

  • 27. Subtypes of excitatory amino acid receptors involved in the stimulation of [3H]dopamine release from cell cultures of rat ventral mesencephalon.
    Mount H, Quirion R, Kohn-Alexander J, Boksa P.
    Synapse; 1990 Feb 12; 5(4):271-80. PubMed ID: 2163120
    [Abstract] [Full Text] [Related]

  • 28. Glutamate receptor subtypes in cultured cerebellar neurons: modulation of glutamate and gamma-aminobutyric acid release.
    Gallo V, Suergiu R, Giovannini C, Levi G.
    J Neurochem; 1987 Dec 12; 49(6):1801-9. PubMed ID: 2890714
    [Abstract] [Full Text] [Related]

  • 29. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones.
    MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL.
    Nature; 1987 Dec 12; 321(6069):519-22. PubMed ID: 3012362
    [Abstract] [Full Text] [Related]

  • 30. N-methyl-D-aspartate, kainate and quisqualate release endogenous adenosine from rat cortical slices.
    Hoehn K, White TD.
    Neuroscience; 1990 Dec 12; 39(2):441-50. PubMed ID: 1982346
    [Abstract] [Full Text] [Related]

  • 31. EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs.
    Sutor B, Hablitz JJ.
    J Neurophysiol; 1989 Mar 12; 61(3):621-34. PubMed ID: 2565379
    [Abstract] [Full Text] [Related]

  • 32. Mediation of thalamic sensory input by both NMDA receptors and non-NMDA receptors.
    Salt TE.
    Nature; 1989 Mar 12; 322(6076):263-5. PubMed ID: 2874492
    [Abstract] [Full Text] [Related]

  • 33. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons.
    Cull-Candy SG, Usowicz MM.
    Nature; 1989 Mar 12; 325(6104):525-8. PubMed ID: 2433594
    [Abstract] [Full Text] [Related]

  • 34. Pharmacological characterization of the glutamate receptor in cultured astrocytes.
    Backus KH, Kettenmann H, Schachner M.
    J Neurosci Res; 1989 Mar 12; 22(3):274-82. PubMed ID: 2540340
    [Abstract] [Full Text] [Related]

  • 35. Extracellular taurine increase in rat hippocampus evoked by specific glutamate receptor activation is related to the excitatory potency of glutamate agonists.
    Menéndez N, Herreras O, Solis JM, Herranz AS, Martín del Río R.
    Neurosci Lett; 1989 Jul 17; 102(1):64-9. PubMed ID: 2571110
    [Abstract] [Full Text] [Related]

  • 36. Acute- and long-term glutamate-mediated regulation of [Ca++]i in rat hippocampal pyramidal neurons in vitro.
    Glaum SR, Scholz WK, Miller RJ.
    J Pharmacol Exp Ther; 1990 Jun 17; 253(3):1293-302. PubMed ID: 1972753
    [Abstract] [Full Text] [Related]

  • 37. Ca2+-dependent depolarization and burst firing of rat CA1 pyramidal neurones induced by N-methyl-D-aspartic acid and quinolinic acid: antagonism by 2-amino-5-phosphonovaleric and kynurenic acids.
    Peet MJ, Curry K, Magnuson DS, McLennan H.
    Can J Physiol Pharmacol; 1986 Feb 17; 64(2):163-8. PubMed ID: 2870788
    [Abstract] [Full Text] [Related]

  • 38. Responses of pyriform cortex neurons to excitatory amino acids: voltage dependence, conductance changes, and effects of divalent cations.
    Hori N, Galeno T, Carpenter DO.
    Cell Mol Neurobiol; 1987 Mar 17; 7(1):73-90. PubMed ID: 3297341
    [Abstract] [Full Text] [Related]

  • 39. In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c-fos mRNA expression.
    Szekely AM, Barbaccia ML, Alho H, Costa E.
    Mol Pharmacol; 1989 Apr 17; 35(4):401-8. PubMed ID: 2539555
    [Abstract] [Full Text] [Related]

  • 40. Glutamate stimulates somatostatin release from diencephalic neurons in primary culture.
    Tapia-Arancibia L, Astier H.
    Endocrinology; 1988 Nov 17; 123(5):2360-6. PubMed ID: 2901950
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 26.