These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 24704964

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.
    Wu S, Chen Z, Braeckevelt M, Seeger EM, Dong R, Kästner M, Paschke H, Hahn A, Kayser G, Kuschk P.
    Water Res; 2012 Apr 15; 46(6):1923-32. PubMed ID: 22289675
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.
    Yvanes-Giuliani YAM, Waite TD, Collins RN.
    Sci Total Environ; 2014 Jul 01; 485-486():232-240. PubMed ID: 24727041
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging.
    Wang G, Hu Z, Li S, Wang Y, Sun X, Zhang X, Li M.
    Chemosphere; 2020 Feb 01; 240():124846. PubMed ID: 31550594
    [Abstract] [Full Text] [Related]

  • 9. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S, Verbeeck M, Verheyen D, Diels J, Smolders E.
    Water Res; 2015 Mar 15; 71():160-70. PubMed ID: 25616116
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X, Ellis A, Wang Y, Xie Z, Duan M, Su C.
    Sci Total Environ; 2009 Jun 01; 407(12):3823-35. PubMed ID: 19344934
    [Abstract] [Full Text] [Related]

  • 14. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium).
    Du Laing G, Chapagain SK, Dewispelaere M, Meers E, Kazama F, Tack FM, Rinklebe J, Verloo MG.
    J Environ Monit; 2009 Apr 01; 11(4):873-81. PubMed ID: 19557243
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.
    Karikari-Yeboah O, Addai-Mensah J.
    Environ Monit Assess; 2017 Feb 01; 189(2):58. PubMed ID: 28091885
    [Abstract] [Full Text] [Related]

  • 18. Biogeochemical mechanisms of iron (Fe) and manganese (Mn) in groundwater and soil profiles in the Zhongning section of the Weining Plain (northwest China).
    Xu F, Li P.
    Sci Total Environ; 2024 Aug 20; 939():173506. PubMed ID: 38815819
    [Abstract] [Full Text] [Related]

  • 19. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland).
    Likus-Cieślik J, Pietrzykowski M, Szostak M, Szulczewski M.
    Environ Monit Assess; 2017 Feb 20; 189(2):87. PubMed ID: 28144870
    [Abstract] [Full Text] [Related]

  • 20. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.
    Wan XM, Tandy S, Hockmann K, Schulin R.
    Environ Pollut; 2013 Jan 20; 172():53-60. PubMed ID: 22982553
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.