These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 24708599

  • 21. Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.).
    Båga M, Fowler DB, Chibbar RN.
    J Exp Bot; 2009; 60(12):3575-85. PubMed ID: 19553371
    [Abstract] [Full Text] [Related]

  • 22. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat.
    Mizuno N, Sugie A, Kobayashi F, Takumi S.
    J Plant Physiol; 2008 Mar 13; 165(4):462-7. PubMed ID: 17766003
    [Abstract] [Full Text] [Related]

  • 23. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen.
    Ganeshan S, Vitamvas P, Fowler DB, Chibbar RN.
    J Exp Bot; 2008 Mar 13; 59(9):2393-402. PubMed ID: 18508811
    [Abstract] [Full Text] [Related]

  • 24. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals.
    Novák A, Boldizsár Á, Ádám É, Kozma-Bognár L, Majláth I, Båga M, Tóth B, Chibbar R, Galiba G.
    J Exp Bot; 2016 Mar 13; 67(5):1285-95. PubMed ID: 26712822
    [Abstract] [Full Text] [Related]

  • 25. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses.
    Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z.
    Plant Physiol; 2014 Mar 13; 164(3):1499-514. PubMed ID: 24424323
    [Abstract] [Full Text] [Related]

  • 26. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress.
    Csiszár J, Gallé A, Horváth E, Dancsó P, Gombos M, Váry Z, Erdei L, Györgyey J, Tari I.
    Plant Physiol Biochem; 2012 Mar 13; 52():119-29. PubMed ID: 22305075
    [Abstract] [Full Text] [Related]

  • 27. Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field.
    Li Q, Byrns B, Badawi MA, Diallo AB, Danyluk J, Sarhan F, Laudencia-Chingcuanco D, Zou J, Fowler DB.
    Plant Physiol; 2018 Mar 13; 176(3):2376-2394. PubMed ID: 29259104
    [Abstract] [Full Text] [Related]

  • 28. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes.
    Vágújfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L.
    Mol Gen Genet; 2000 Mar 13; 263(2):194-200. PubMed ID: 10778737
    [Abstract] [Full Text] [Related]

  • 29. Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background.
    Kalapos B, Novák A, Dobrev P, Vítámvás P, Marincs F, Galiba G, Vanková R.
    Front Plant Sci; 2017 Mar 13; 8():2033. PubMed ID: 29238355
    [Abstract] [Full Text] [Related]

  • 30. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1.
    Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V.
    PLoS One; 2015 Mar 13; 10(3):e0120291. PubMed ID: 25798624
    [Abstract] [Full Text] [Related]

  • 31. Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.).
    Xu K, Zhao Y, Gu J, Zhou M, Gao L, Sun RX, Wang WW, Zhang SH, Yang XJ.
    Plant Sci; 2022 May 13; 318():111242. PubMed ID: 35351310
    [Abstract] [Full Text] [Related]

  • 32. Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat.
    Zabotin AI, Barisheva TS, Trofimova OI, Toroschina TE, Larskaya IA, Zabotina OA.
    Plant Physiol Biochem; 2009 Sep 13; 47(9):854-8. PubMed ID: 19467881
    [Abstract] [Full Text] [Related]

  • 33. Light-induced frost tolerance differs in winter and spring wheat plants.
    Szalai G, Pap M, Janda T.
    J Plant Physiol; 2009 Nov 01; 166(16):1826-31. PubMed ID: 19481291
    [Abstract] [Full Text] [Related]

  • 34. Identification of redox-regulated components of arsenate (As(V)) tolerance through thiourea supplementation in rice.
    Srivastava AK, Srivastava S, Mishra S, D'Souza SF, Suprasanna P.
    Metallomics; 2014 Sep 01; 6(9):1718-30. PubMed ID: 25008039
    [Abstract] [Full Text] [Related]

  • 35. Identification of a novel LEA protein involved in freezing tolerance in wheat.
    Sasaki K, Christov NK, Tsuda S, Imai R.
    Plant Cell Physiol; 2014 Jan 01; 55(1):136-47. PubMed ID: 24265272
    [Abstract] [Full Text] [Related]

  • 36. Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum.
    Hussein Z, Dryanova A, Maret D, Gulick PJ.
    Plant Cell Rep; 2014 Jan 01; 33(1):189-201. PubMed ID: 24141639
    [Abstract] [Full Text] [Related]

  • 37. Induction of glutathione synthesis and glutathione reductase activity by abiotic stresses in maize and wheat.
    Kocsy G, Szalai G, Galiba G.
    ScientificWorldJournal; 2002 Jun 21; 2():1699-705. PubMed ID: 12806164
    [Abstract] [Full Text] [Related]

  • 38. 1Selenium supply alters the subcellular distribution and chemical forms of cadmium and the expression of transporter genes involved in cadmium uptake and translocation in winter wheat (Triticum aestivum).
    Zhu J, Zhao P, Nie Z, Shi H, Li C, Wang Y, Qin S, Qin X, Liu H.
    BMC Plant Biol; 2020 Dec 07; 20(1):550. PubMed ID: 33287728
    [Abstract] [Full Text] [Related]

  • 39. [Functional analysis of vernalization-related gene VER17 in flower development using antisense RNA strategy in winter wheat].
    Xu WZ, Yong WD, Xu YY, Liang TB, Bai W, Chong K, Tan KH, Xu ZH, Zhu ZQ.
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb 07; 31(1):71-7. PubMed ID: 15692181
    [Abstract] [Full Text] [Related]

  • 40. Greater morphological and primary metabolic adaptations in roots contribute to phosphate-deficiency tolerance in the bread wheat cultivar Kenong199.
    Zheng L, Karim MR, Hu YG, Shen R, Lan P.
    BMC Plant Biol; 2021 Aug 19; 21(1):381. PubMed ID: 34412589
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.