These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 24731183
1. Biophysical implications of sphingosine accumulation in membrane properties at neutral and acidic pH. Zupancic E, Carreira AC, de Almeida RF, Silva LC. J Phys Chem B; 2014 May 08; 118(18):4858-66. PubMed ID: 24731183 [Abstract] [Full Text] [Related]
2. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M. Biochim Biophys Acta; 2013 Sep 08; 1828(9):2099-110. PubMed ID: 23702462 [Abstract] [Full Text] [Related]
3. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Aussenac F, Tavares M, Dufourc EJ. Biochemistry; 2003 Feb 18; 42(6):1383-90. PubMed ID: 12578350 [Abstract] [Full Text] [Related]
4. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Bunge A, Müller P, Stöckl M, Herrmann A, Huster D. Biophys J; 2008 Apr 01; 94(7):2680-90. PubMed ID: 18178660 [Abstract] [Full Text] [Related]
6. Investigation of domain formation in sphingomyelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte Carlo simulations. Frazier ML, Wright JR, Pokorny A, Almeida PF. Biophys J; 2007 Apr 01; 92(7):2422-33. PubMed ID: 17218467 [Abstract] [Full Text] [Related]
7. Development of lysosome-mimicking vesicles to study the effect of abnormal accumulation of sphingosine on membrane properties. Carreira AC, de Almeida RFM, Silva LC. Sci Rep; 2017 Jun 21; 7(1):3949. PubMed ID: 28638081 [Abstract] [Full Text] [Related]
8. Sphingomyelin/phosphatidylcholine/cholesterol monolayers--analysis of the interactions in model membranes and Brewster Angle Microscopy experiments. Wydro P. Colloids Surf B Biointerfaces; 2012 May 01; 93():174-9. PubMed ID: 22277747 [Abstract] [Full Text] [Related]
9. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Tsamaloukas A, Szadkowska H, Heerklotz H. Biophys J; 2006 Jun 15; 90(12):4479-87. PubMed ID: 16581844 [Abstract] [Full Text] [Related]
10. Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Varela AR, Ventura AE, Carreira AC, Fedorov A, Futerman AH, Prieto M, Silva LC. Phys Chem Chem Phys; 2016 Dec 21; 19(1):340-346. PubMed ID: 27905603 [Abstract] [Full Text] [Related]
11. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition. Esteves M, Ferreira MJ, Kozica A, Fernandes AC, Gonçalves da Silva A, Saramago B. Langmuir; 2015 Aug 18; 31(32):8901-10. PubMed ID: 26218497 [Abstract] [Full Text] [Related]
12. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Holopainen JM, Subramanian M, Kinnunen PK. Biochemistry; 1998 Dec 15; 37(50):17562-70. PubMed ID: 9860872 [Abstract] [Full Text] [Related]
13. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra. Yasuda T, Matsumori N, Tsuchikawa H, Lönnfors M, Nyholm TK, Slotte JP, Murata M. Langmuir; 2015 Dec 29; 31(51):13783-92. PubMed ID: 26639840 [Abstract] [Full Text] [Related]
14. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Pathak P, London E. Biophys J; 2011 Nov 16; 101(10):2417-25. PubMed ID: 22098740 [Abstract] [Full Text] [Related]
15. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR. Holland GP, McIntyre SK, Alam TM. Biophys J; 2006 Jun 01; 90(11):4248-60. PubMed ID: 16533851 [Abstract] [Full Text] [Related]
16. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR. Biochim Biophys Acta Biomembr; 2018 Oct 01; 1860(10):1985-1993. PubMed ID: 29730243 [Abstract] [Full Text] [Related]
17. Use of cyclodextrin for AFM monitoring of model raft formation. Giocondi MC, Milhiet PE, Dosset P, Le Grimellec C. Biophys J; 2004 Feb 01; 86(2):861-9. PubMed ID: 14747321 [Abstract] [Full Text] [Related]
18. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines. Parkkila P, Stefl M, Olżyńska A, Hof M, Kinnunen PK. Biochim Biophys Acta; 2015 Jan 01; 1848(1 Pt A):167-73. PubMed ID: 25450344 [Abstract] [Full Text] [Related]
19. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R. Biochim Biophys Acta; 2006 Feb 01; 1758(2):248-58. PubMed ID: 16529710 [Abstract] [Full Text] [Related]
20. Edelfosine is incorporated into rafts and alters their organization. Ausili A, Torrecillas A, Aranda FJ, Mollinedo F, Gajate C, Corbalán-García S, de Godos A, Gómez-Fernández JC. J Phys Chem B; 2008 Sep 18; 112(37):11643-54. PubMed ID: 18712919 [Abstract] [Full Text] [Related] Page: [Next] [New Search]