These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 24731826

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Hydrolysis of hydrophobic esters in a bicontinuous microemulsion catalysed by lipase B from Candida antarctica.
    Steudle AK, Subinya M, Nestl BM, Stubenrauch C.
    Chemistry; 2015 Feb 02; 21(6):2691-700. PubMed ID: 25512180
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Enzymatic synthesis of sialic acid derivative by immobilized lipase from Candida antarctica.
    Chau CM, Liu KJ, Lin CH.
    Bioresour Technol; 2011 Nov 02; 102(21):10136-8. PubMed ID: 21890341
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Lipase catalysis: an environmentally friendly production for polyol esters (biolubricant) from microalgae oil.
    Kutluk T, Kutluk BG.
    Environ Technol; 2023 Nov 02; 44(27):4099-4112. PubMed ID: 35588240
    [Abstract] [Full Text] [Related]

  • 28. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H, Gao X, Philkana RS.
    Bioresour Technol; 2005 May 02; 96(7):769-77. PubMed ID: 15607189
    [Abstract] [Full Text] [Related]

  • 29. Esterification and hydrolytic activities of Candida rugosa lipase isoform 1 (LIP1) immobilized on celite 545, duolite A7, and sephadex G-25.
    Lumor SE, Akoh CC.
    J Agric Food Chem; 2008 Nov 12; 56(21):10396-8. PubMed ID: 18850711
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Modeling and optimization of lipase-catalyzed production of succinic acid ester using central composite design analysis.
    Abdul Rahman MB, Jarmi NI, Chaibakhsh N, Basri M.
    J Ind Microbiol Biotechnol; 2011 Jan 12; 38(1):229-34. PubMed ID: 20803246
    [Abstract] [Full Text] [Related]

  • 32. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports.
    Virgen-Ortíz JJ, Tacias-Pascacio VG, Hirata DB, Torrestiana-Sanchez B, Rosales-Quintero A, Fernandez-Lafuente R.
    Enzyme Microb Technol; 2017 Jan 12; 96():30-35. PubMed ID: 27871382
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. High-yield synthesis of wax esters catalysed by modified Candida rugosa lipase.
    Guncheva MH, Zhiryakova D.
    Biotechnol Lett; 2008 Mar 12; 30(3):509-12. PubMed ID: 17957342
    [Abstract] [Full Text] [Related]

  • 39. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application.
    Huang XJ, Yu AG, Xu ZK.
    Bioresour Technol; 2008 Sep 12; 99(13):5459-65. PubMed ID: 18248984
    [Abstract] [Full Text] [Related]

  • 40. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC, Leāo AB, Melo EH, Ledingham WM, Filho JL, Sivewright M, Kennedy JF.
    Artif Cells Blood Substit Immobil Biotechnol; 2007 Sep 12; 35(2):221-35. PubMed ID: 17453706
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.