These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


913 related items for PubMed ID: 24738337

  • 21. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells.
    Lai GJ, Shalumon KT, Chen SH, Chen JP.
    Carbohydr Polym; 2014 Oct 13; 111():288-97. PubMed ID: 25037354
    [Abstract] [Full Text] [Related]

  • 22. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.
    Shen R, Xu W, Xue Y, Chen L, Ye H, Zhong E, Ye Z, Gao J, Yan Y.
    Artif Cells Nanomed Biotechnol; 2018 Oct 13; 46(sup2):419-430. PubMed ID: 29661034
    [Abstract] [Full Text] [Related]

  • 23. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S.
    ACS Appl Mater Interfaces; 2016 Feb 10; 8(5):3499-515. PubMed ID: 26756224
    [Abstract] [Full Text] [Related]

  • 24. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering.
    Monteiro N, Ribeiro D, Martins A, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM.
    ACS Nano; 2014 Aug 26; 8(8):8082-94. PubMed ID: 25046548
    [Abstract] [Full Text] [Related]

  • 25. Fabrication, characterization and osteoblast responses of poly (octanediol citrate)/bioglass nanofiber composites.
    Lian H, Meng Z.
    Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():123-129. PubMed ID: 29519421
    [Abstract] [Full Text] [Related]

  • 26. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors.
    Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S.
    PLoS One; 2011 Mar 01; 6(10):e26211. PubMed ID: 22022571
    [Abstract] [Full Text] [Related]

  • 27. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y, Shao W, Qian W, He J, Zhou Y, Qi K, Wang L, Cui S, Wang R.
    Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():195-207. PubMed ID: 29519429
    [Abstract] [Full Text] [Related]

  • 28. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG, Hwang MP, Du P, Ko J, Ha CW, Do SH, Park K.
    Biomaterials; 2015 May 01; 50():75-86. PubMed ID: 25736498
    [Abstract] [Full Text] [Related]

  • 29. Bone-like mineral nucleating peptide nanofibers induce differentiation of human mesenchymal stem cells into mature osteoblasts.
    Ceylan H, Kocabey S, Unal Gulsuner H, Balcik OS, Guler MO, Tekinay AB.
    Biomacromolecules; 2014 Jul 14; 15(7):2407-18. PubMed ID: 24878392
    [Abstract] [Full Text] [Related]

  • 30. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration.
    Ye H, Zhu J, Deng D, Jin S, Li J, Man Y.
    J Biomater Sci Polym Ed; 2019 Nov 14; 30(16):1505-1522. PubMed ID: 31322979
    [Abstract] [Full Text] [Related]

  • 31. Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro.
    Kolambkar YM, Bajin M, Wojtowicz A, Hutmacher DW, García AJ, Guldberg RE.
    Tissue Eng Part A; 2014 Jan 14; 20(1-2):398-409. PubMed ID: 24020454
    [Abstract] [Full Text] [Related]

  • 32. Strontium functionalized scaffold for bone tissue engineering.
    Prabha RD, Nair BP, Ditzel N, Kjems J, Nair PD, Kassem M.
    Mater Sci Eng C Mater Biol Appl; 2019 Jan 01; 94():509-515. PubMed ID: 30423735
    [Abstract] [Full Text] [Related]

  • 33. Improving in vitro biocompatibility on biomimetic mineralized collagen bone materials modified with hyaluronic acid oligosaccharide.
    Li M, Zhang X, Jia W, Wang Q, Liu Y, Wang X, Wang C, Jiang J, Gu G, Guo Z, Chen Z.
    Mater Sci Eng C Mater Biol Appl; 2019 Nov 01; 104():110008. PubMed ID: 31499961
    [Abstract] [Full Text] [Related]

  • 34. Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers.
    Soleimanifar F, Hosseini FS, Atabati H, Behdari A, Kabiri L, Enderami SE, Khani MM, Ardeshirylajimi A, Saburi E.
    J Cell Physiol; 2019 Jul 01; 234(7):10315-10323. PubMed ID: 30378123
    [Abstract] [Full Text] [Related]

  • 35. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D, Zhang K, Shi C, Liu L, Yan G, Liu C, Zhou Y, Hu Y, Sun H, Yang B.
    Int J Nanomedicine; 2018 Jul 01; 13():7167-7181. PubMed ID: 30464466
    [Abstract] [Full Text] [Related]

  • 36. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration.
    Reinwald Y, El Haj AJ.
    J Biomed Mater Res A; 2018 Mar 01; 106(3):629-640. PubMed ID: 28984025
    [Abstract] [Full Text] [Related]

  • 37. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering.
    Chen M, Le DQ, Baatrup A, Nygaard JV, Hein S, Bjerre L, Kassem M, Zou X, Bünger C.
    Acta Biomater; 2011 May 01; 7(5):2244-55. PubMed ID: 21195810
    [Abstract] [Full Text] [Related]

  • 38. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.
    Karaman O, Kumar A, Moeinzadeh S, He X, Cui T, Jabbari E.
    J Tissue Eng Regen Med; 2016 Feb 01; 10(2):E132-46. PubMed ID: 23897753
    [Abstract] [Full Text] [Related]

  • 39. Methodology Involved in the Osteogenic Differentiation of Mesenchymal Stem Cells on Chitosan-Collagen Nanofibers Incorporated with Titanium Dioxide Nanoparticles.
    Ashraf R, Sofi HS, Sheikh FA.
    Methods Mol Biol; 2020 Feb 01; 2125():85-94. PubMed ID: 31707644
    [Abstract] [Full Text] [Related]

  • 40. Zwitterionic PMCP-Modified Polycaprolactone Surface for Tissue Engineering: Antifouling, Cell Adhesion Promotion, and Osteogenic Differentiation Properties.
    Chen X, Lin Z, Feng Y, Tan H, Xu X, Luo J, Li J.
    Small; 2019 Oct 01; 15(42):e1903784. PubMed ID: 31448570
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 46.