These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
984 related items for PubMed ID: 24743023
1. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC, Perez KR, Riske KA, Bozelli JC, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM. Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [Abstract] [Full Text] [Related]
2. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide. Carretero GPB, Saraiva GKV, Cauz ACG, Rodrigues MA, Kiyota S, Riske KA, Dos Santos AA, Pinatto-Botelho MF, Bemquerer MP, Gueiros-Filho FJ, Chaimovich H, Schreier S, Cuccovia IM. Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1502-1516. PubMed ID: 29750913 [Abstract] [Full Text] [Related]
3. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity. Finger S, Kerth A, Dathe M, Blume A. Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060 [Abstract] [Full Text] [Related]
5. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A, Dathe M, Blume A. Biophys Chem; 2013 Nov; 180-181():10-21. PubMed ID: 23792704 [Abstract] [Full Text] [Related]
7. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX, Damodaran K, Blazyk J, Lorigan GA. Biochemistry; 2005 Aug 02; 44(30):10208-17. PubMed ID: 16042398 [Abstract] [Full Text] [Related]
8. Dynamical structure of the short multifunctional peptide BP100 in membranes. Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RA, Ulrich AS. Biochim Biophys Acta; 2014 Mar 02; 1838(3):940-9. PubMed ID: 24216062 [Abstract] [Full Text] [Related]
9. Deciphering the Mechanism of Action of the Antimicrobial Peptide BP100. Riesco-Llach G, Llanet-Ferrer S, Planas M, Feliu L. Int J Mol Sci; 2024 Mar 19; 25(6):. PubMed ID: 38542427 [Abstract] [Full Text] [Related]
10. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MA, Troeira Henriques S. Biochim Biophys Acta; 2013 Mar 19; 1828(3):944-55. PubMed ID: 23246973 [Abstract] [Full Text] [Related]
11. Binding and Flip as Initial Steps for BP-100 Antimicrobial Actions. Park P, Franco LR, Chaimovich H, Coutinho K, Cuccovia IM, Lima FS. Sci Rep; 2019 Jun 13; 9(1):8622. PubMed ID: 31197199 [Abstract] [Full Text] [Related]
12. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Biochim Biophys Acta; 2016 Jun 13; 1858(6):1328-38. PubMed ID: 26975251 [Abstract] [Full Text] [Related]
13. Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Powers JP, Tan A, Ramamoorthy A, Hancock RE. Biochemistry; 2005 Nov 29; 44(47):15504-13. PubMed ID: 16300399 [Abstract] [Full Text] [Related]
14. Role of interactions at the lipid-water interface for domain formation. Gawrisch K, Barry JA, Holte LL, Sinnwell T, Bergelson LD, Ferretti JA. Mol Membr Biol; 1995 Nov 29; 12(1):83-8. PubMed ID: 7767388 [Abstract] [Full Text] [Related]
15. The Unusual Aggregation and Fusion Activity of the Antimicrobial Peptide W-BP100 in Anionic Vesicles. Ferreira AR, Ferreira M, Nunes C, Reis S, Teixeira C, Gomes P, Gameiro P. Membranes (Basel); 2023 Jan 21; 13(2):. PubMed ID: 36837642 [Abstract] [Full Text] [Related]
16. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C, Abbassi F, Lequin O, Ayala-Sanmartin J, Ladram A, Nicolas P, Amiche M. Biochemistry; 2009 Jan 20; 48(2):313-27. PubMed ID: 19113844 [Abstract] [Full Text] [Related]
17. Structure-activity relationship of the antimicrobial peptide gomesin: the role of peptide hydrophobicity in its interaction with model membranes. Mattei B, Miranda A, Perez KR, Riske KA. Langmuir; 2014 Apr 01; 30(12):3513-21. PubMed ID: 24606158 [Abstract] [Full Text] [Related]
18. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH, Heng C, Swann MJ, Gehman JD, Separovic F, Aguilar MI. Biochim Biophys Acta; 2010 Oct 01; 1798(10):1977-86. PubMed ID: 20599687 [Abstract] [Full Text] [Related]
19. Naphthalimide-Containing BP100 Leads to Higher Model Membranes Interactions and Antimicrobial Activity. Carretero GPB, Saraiva GKV, Rodrigues MA, Kiyota S, Bemquerer MP, Chaimovich H, Cuccovia IM. Biomolecules; 2021 Apr 08; 11(4):. PubMed ID: 33917850 [Abstract] [Full Text] [Related]
20. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. Tamba Y, Yamazaki M. J Phys Chem B; 2009 Apr 09; 113(14):4846-52. PubMed ID: 19267489 [Abstract] [Full Text] [Related] Page: [Next] [New Search]