These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 24745399

  • 21. Performance bound for quantum absorption refrigerators.
    Correa LA, Palao JP, Adesso G, Alonso D.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Universal Bounds on Fluctuations in Continuous Thermal Machines.
    Saryal S, Gerry M, Khait I, Segal D, Agarwalla BK.
    Phys Rev Lett; 2021 Nov 05; 127(19):190603. PubMed ID: 34797144
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Finite-power performance of quantum heat engines in linear response.
    Liu Q, He J, Ma Y, Wang J.
    Phys Rev E; 2019 Jul 05; 100(1-1):012105. PubMed ID: 31499858
    [Abstract] [Full Text] [Related]

  • 26. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power.
    Long R, Liu W.
    Phys Rev E; 2016 Nov 05; 94(5-1):052114. PubMed ID: 27967103
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
    Izumida Y, Okuda K.
    Phys Rev Lett; 2014 May 09; 112(18):180603. PubMed ID: 24856684
    [Abstract] [Full Text] [Related]

  • 29. Power, efficiency, and fluctuations in steady-state heat engines.
    Benenti G, Casati G, Wang J.
    Phys Rev E; 2020 Oct 09; 102(4-1):040103. PubMed ID: 33212678
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Role of the superposition principle for enhancing the efficiency of the quantum-mechanical Carnot engine.
    Abe S, Okuyama S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 09; 85(1 Pt 1):011104. PubMed ID: 22400509
    [Abstract] [Full Text] [Related]

  • 32. Performance of an irreversible quantum Carnot engine with spin 12.
    Wu F, Chen L, Wu S, Sun F, Wu C.
    J Chem Phys; 2006 Jun 07; 124(21):214702. PubMed ID: 16774426
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z, Holubec V.
    Phys Rev E; 2021 May 07; 103(5-1):052125. PubMed ID: 34134287
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Efficiency at Maximum Power of a Carnot Quantum Information Engine.
    Fadler P, Friedenberger A, Lutz E.
    Phys Rev Lett; 2023 Jun 16; 130(24):240401. PubMed ID: 37390443
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D, Kurizki G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug 16; 90(2):022102. PubMed ID: 25215684
    [Abstract] [Full Text] [Related]

  • 40. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference.
    Miura K, Izumida Y, Okuda K.
    Phys Rev E; 2022 Mar 16; 105(3-1):034102. PubMed ID: 35428092
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.