These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 24749412

  • 1. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.
    Lin CC, Han HV, Chen HC, Chen KJ, Tsai YL, Lin WY, Kuo HC, Yu P.
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1051-63. PubMed ID: 24749412
    [Abstract] [Full Text] [Related]

  • 2. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y.
    Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842
    [Abstract] [Full Text] [Related]

  • 3. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
    Sun XW, Chen J, Song JL, Zhao DW, Deng WQ, Lei W.
    Opt Express; 2010 Jan 18; 18(2):1296-301. PubMed ID: 20173955
    [Abstract] [Full Text] [Related]

  • 4. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z.
    Nanoscale; 2011 May 18; 3(5):2188-93. PubMed ID: 21451826
    [Abstract] [Full Text] [Related]

  • 5. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition.
    Yu XY, Liao JY, Qiu KQ, Kuang DB, Su CY.
    ACS Nano; 2011 Dec 27; 5(12):9494-500. PubMed ID: 22032641
    [Abstract] [Full Text] [Related]

  • 6. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells.
    Li C, Yang L, Xiao J, Wu YC, Søndergaard M, Luo Y, Li D, Meng Q, Iversen BB.
    Phys Chem Chem Phys; 2013 Jun 14; 15(22):8710-5. PubMed ID: 23639947
    [Abstract] [Full Text] [Related]

  • 7. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X, Cao G.
    Nanoscale; 2013 Feb 07; 5(3):936-43. PubMed ID: 23166058
    [Abstract] [Full Text] [Related]

  • 8. Efficient passivated phthalocyanine-quantum dot solar cells.
    Blas-Ferrando VM, Ortiz J, González-Pedro V, Sánchez RS, Mora-Seró I, Fernández-Lázaro F, Sastre-Santos Á.
    Chem Commun (Camb); 2015 Jan 31; 51(9):1732-5. PubMed ID: 25519050
    [Abstract] [Full Text] [Related]

  • 9. Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control.
    Hwang JY, Lee SA, Lee YH, Seok SI.
    ACS Appl Mater Interfaces; 2010 May 31; 2(5):1343-8. PubMed ID: 20420438
    [Abstract] [Full Text] [Related]

  • 10. CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications.
    Yan J, Ye Q, Wang X, Yu B, Zhou F.
    Nanoscale; 2012 Mar 21; 4(6):2109-16. PubMed ID: 22349081
    [Abstract] [Full Text] [Related]

  • 11. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.
    Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK.
    Nano Lett; 2009 Dec 21; 9(12):4221-7. PubMed ID: 19891465
    [Abstract] [Full Text] [Related]

  • 12. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.
    Zhou N, Yang Y, Huang X, Wu H, Luo Y, Li D, Meng Q.
    ChemSusChem; 2013 Apr 21; 6(4):687-92. PubMed ID: 23495072
    [Abstract] [Full Text] [Related]

  • 13. Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly.
    Choi H, Santra PK, Kamat PV.
    ACS Nano; 2012 Jun 26; 6(6):5718-26. PubMed ID: 22658983
    [Abstract] [Full Text] [Related]

  • 14. Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles.
    Wang P, Abrusci A, Wong HM, Svensson M, Andersson MR, Greenham NC.
    Nano Lett; 2006 Aug 26; 6(8):1789-93. PubMed ID: 16895375
    [Abstract] [Full Text] [Related]

  • 15. ZnO nanosheets decorated with CdSe and TiO2 for the architecture of dye-sensitized solar cells.
    Kim YT, Park MY, Choi KH, Tai WS, Shim WH, Park SY, Kang JW, Lee KH, Jeong Y, Kim YD, Lim DC.
    J Nanosci Nanotechnol; 2011 Mar 26; 11(3):2263-8. PubMed ID: 21449378
    [Abstract] [Full Text] [Related]

  • 16. CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices.
    Rakshit T, Mondal SP, Manna I, Ray SK.
    ACS Appl Mater Interfaces; 2012 Nov 26; 4(11):6085-95. PubMed ID: 23082825
    [Abstract] [Full Text] [Related]

  • 17. Sea urchin TiO2-nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells.
    Kong EH, Chang YJ, Park YC, Yoon YH, Park HJ, Jang HM.
    Phys Chem Chem Phys; 2012 Apr 07; 14(13):4620-5. PubMed ID: 22362094
    [Abstract] [Full Text] [Related]

  • 18. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.
    Choi H, Nicolaescu R, Paek S, Ko J, Kamat PV.
    ACS Nano; 2011 Nov 22; 5(11):9238-45. PubMed ID: 21961965
    [Abstract] [Full Text] [Related]

  • 19. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
    Santra PK, Kamat PV.
    J Am Chem Soc; 2012 Feb 08; 134(5):2508-11. PubMed ID: 22280479
    [Abstract] [Full Text] [Related]

  • 20. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells.
    Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradečak S, Bulović V.
    Adv Mater; 2013 May 28; 25(20):2790-6. PubMed ID: 23440957
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.