These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Lavage of contaminated surfaces: an in vitro evaluation of the effectiveness of different systems. Bahrs C, Schnabel M, Frank T, Zapf C, Mutters R, von Garrel T. J Surg Res; 2003 Jun 01; 112(1):26-30. PubMed ID: 12873429 [Abstract] [Full Text] [Related]
3. Bacteria aerosol spread and wound bacteria reduction with different methods for wound debridement in an animal model. Sönnergren HH, Polesie S, Strömbeck L, Aldenborg F, Johansson BR, Faergemann J. Acta Derm Venereol; 2015 Mar 01; 95(3):272-7. PubMed ID: 25117212 [Abstract] [Full Text] [Related]
5. Hydrosurgical debridement as an approach to wound healing: an animal thermal burn model. Hirokawa E, Sato T, Fujino T, Gotoh Y, Yokogawa H, Ichioka S. J Wound Care; 2019 May 02; 28(5):304-311. PubMed ID: 31067159 [Abstract] [Full Text] [Related]
6. Safety and efficacy of waterjet debridement vs. conventional debridement in the treatment of extremely severe burns: A retrospective analysis. Tang XD, Qiu L, Wang F, Liu S, Lü XW, Chen XL. Burns; 2023 Dec 02; 49(8):1926-1934. PubMed ID: 37827935 [Abstract] [Full Text] [Related]
7. Is NS-EDTA Effective in Clearing Bacteria From Infected Wounds in a Rat Model? Zhu H, Bao B, Zheng X. Clin Orthop Relat Res; 2018 May 02; 476(5):1083-1090. PubMed ID: 29481349 [Abstract] [Full Text] [Related]
8. Comparing the hydrosurgery system to conventional debridement techniques for the treatment of delayed healing wounds: a prospective, randomised clinical trial to investigate clinical efficacy and cost-effectiveness. Liu J, Ko JH, Secretov E, Huang E, Chukwu C, West J, Piserchia K, Galiano RD. Int Wound J; 2015 Aug 02; 12(4):456-61. PubMed ID: 24618054 [Abstract] [Full Text] [Related]
12. Routes and sources of Staphylococcus aureus transmitted to the surgical wound during cardiothoracic surgery: possibility of preventing wound contamination by use of special scrub suits. Tammelin A, Hambraeus A, Ståhle E. Infect Control Hosp Epidemiol; 2001 Jun 02; 22(6):338-46. PubMed ID: 11519910 [Abstract] [Full Text] [Related]
13. Traumatic wound debridement: a comparison of irrigation methods. Draeger RW, Dahners LE. J Orthop Trauma; 2006 Feb 02; 20(2):83-8. PubMed ID: 16462559 [Abstract] [Full Text] [Related]
14. A novel in vitro wound biofilm model used to evaluate low-frequency ultrasonic-assisted wound debridement. Crone S, Garde C, Bjarnsholt T, Alhede M. J Wound Care; 2015 Feb 02; 24(2):64, 66-9, 72. PubMed ID: 25647434 [Abstract] [Full Text] [Related]
16. Hydrosurgical Debridement Use Associated With Decreased Surgical Site-Related Readmissions: A Retrospective Analysis. James CV, Patel M, Ilonzo N, Wallace K, Lee J, Chan M, Ellis S, Lantis Ii JC. Wounds; 2021 Mar 28. PubMed ID: 33913820 [Abstract] [Full Text] [Related]
17. Comparison of wound irrigation and tangential hydrodissection in bacterial clearance of contaminated wounds: results of a randomized, controlled clinical study. Granick MS, Tenenhaus M, Knox KR, Ulm JP. Ostomy Wound Manage; 2007 Apr 28; 53(4):64-6, 68-70, 72. PubMed ID: 17449917 [Abstract] [Full Text] [Related]
19. Hydrosurgery as a safe and efficient debridement method in a clinical wound unit. Ferrer-Sola M, Sureda-Vidal H, Altimiras-Roset J, Fontsere-Candell E, Gonzalez-Martinez V, Espaulella-Panicot J, Falanga V, Otero-Viñas M. J Wound Care; 2017 Oct 02; 26(10):593-599. PubMed ID: 28976826 [Abstract] [Full Text] [Related]