These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 24751490

  • 1. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies.
    Bagherifam S, Lakzian A, Fotovat A, Khorasani R, Komarneni S.
    J Hazard Mater; 2014 May 30; 273():247-52. PubMed ID: 24751490
    [Abstract] [Full Text] [Related]

  • 2. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E, Naidu R, Weber J, Juhasz AL.
    Chemosphere; 2008 Mar 30; 71(4):773-80. PubMed ID: 18023842
    [Abstract] [Full Text] [Related]

  • 3. Fast and efficient remediation of antimony-contaminated surface water and field soil using alumina supported Fe-Mn binary oxide.
    Gong Y, Bai Y, Ye P, Li H.
    Chemosphere; 2024 Sep 30; 364():143165. PubMed ID: 39181457
    [Abstract] [Full Text] [Related]

  • 4. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.
    Komárek M, Vaněk A, Ettler V.
    Environ Pollut; 2013 Jan 30; 172():9-22. PubMed ID: 22982549
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2: Pot experiment and field application.
    Li B, Zhou S, Wei D, Long J, Peng L, Tie B, Williams PN, Lei M.
    Sci Total Environ; 2019 Feb 10; 650(Pt 1):546-556. PubMed ID: 30205344
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils.
    Doherty SJ, Tighe MK, Wilson SC.
    Chemosphere; 2017 May 10; 174():208-217. PubMed ID: 28167352
    [Abstract] [Full Text] [Related]

  • 10. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile.
    Ascar L, Ahumada I, Richter P.
    Chemosphere; 2008 Jan 10; 70(7):1211-7. PubMed ID: 17889255
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.
    Yan XL, Lin LY, Liao XY, Zhang WB, Wen Y.
    Chemosphere; 2013 Oct 10; 93(4):661-7. PubMed ID: 23871591
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effect of soil organic matter on antimony bioavailability after the remediation process.
    Nakamaru YM, Martín Peinado FJ.
    Environ Pollut; 2017 Sep 10; 228():425-432. PubMed ID: 28554032
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids.
    Denys S, Tack K, Caboche J, Delalain P.
    Chemosphere; 2009 Feb 10; 74(5):711-6. PubMed ID: 19027930
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.