These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 24751493
1. Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique. Liang S, Guan DX, Ren JH, Zhang M, Luo J, Ma LQ. J Hazard Mater; 2014 May 30; 273():272-9. PubMed ID: 24751493 [Abstract] [Full Text] [Related]
3. Characterization of arsenic availability in dry and flooded soils using sequential extraction and diffusive gradients in thin films (DGT) techniques. Zhang L, Sun Q, Ding S, Cheng X, Liu Q, Zhang C. Environ Sci Pollut Res Int; 2017 Jun 30; 24(18):15727-15734. PubMed ID: 28527143 [Abstract] [Full Text] [Related]
4. Bioaccessible and non-bioaccessible fractions of soil arsenic. Whitacre SD, Basta NT, Dayton EA. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013 Jun 30; 48(6):620-8. PubMed ID: 23442113 [Abstract] [Full Text] [Related]
6. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils. Tang XY, Cui YS, Duan J, Tang L. J Hazard Mater; 2008 Dec 15; 160(1):29-36. PubMed ID: 18395339 [Abstract] [Full Text] [Related]
7. Dynamics of lead (Pb) in different soil conditions. Somasundaram J, Krishnasamy R, Mahimairaja S, Savithri P. J Environ Sci Eng; 2006 Apr 15; 48(2):123-8. PubMed ID: 17913189 [Abstract] [Full Text] [Related]
8. Impact of temperature on the aging mechanisms of arsenic in soils: fractionation and bioaccessibility. Huang G, Chen Z, Wang J, Hou Q, Zhang Y. Environ Sci Pollut Res Int; 2016 Mar 15; 23(5):4594-601. PubMed ID: 26520097 [Abstract] [Full Text] [Related]
9. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E, Naidu R, Weber J, Juhasz AL. Chemosphere; 2008 Mar 15; 71(4):773-80. PubMed ID: 18023842 [Abstract] [Full Text] [Related]
10. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile. Ascar L, Ahumada I, Richter P. Chemosphere; 2008 Jan 15; 70(7):1211-7. PubMed ID: 17889255 [Abstract] [Full Text] [Related]
11. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Anawar HM, Garcia-Sanchez A, Santa Regina I. Chemosphere; 2008 Feb 15; 70(8):1459-67. PubMed ID: 17936872 [Abstract] [Full Text] [Related]
12. Measuring the solid-phase fractionation of lead in urban and rural soils using a combination of geochemical survey data and chemical extractions. Cave M, Wragg J, Gowing C, Gardner A. Environ Geochem Health; 2015 Aug 15; 37(4):779-90. PubMed ID: 25840564 [Abstract] [Full Text] [Related]
15. Fractionation Analysis of Mercury in Soils: A Comparison of Three Techniques for Bioavailable Mercury Fraction Determination. Pelcová P, Ridošková A, Hrachovinová J, Grmela J. Environ Toxicol Chem; 2020 Sep 15; 39(9):1670-1677. PubMed ID: 32516439 [Abstract] [Full Text] [Related]
18. Effect of organic matter oxidation on the fractionation of copper, zinc, lead, and arsenic in sewage sludge and amended soils. Stietiya MH, Wang JJ. J Environ Qual; 2011 Sep 15; 40(4):1162-71. PubMed ID: 21712586 [Abstract] [Full Text] [Related]