These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 24760003

  • 1. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.
    Devanathan S, Erban A, Perez-Torres R, Kopka J, Makaroff CA.
    PLoS One; 2014; 9(4):e95971. PubMed ID: 24760003
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Structural studies on a mitochondrial glyoxalase II.
    Marasinghe GP, Sander IM, Bennett B, Periyannan G, Yang KW, Makaroff CA, Crowder MW.
    J Biol Chem; 2005 Dec 09; 280(49):40668-75. PubMed ID: 16227621
    [Abstract] [Full Text] [Related]

  • 5. Responses of the chloroplast glyoxalase system to high CO2 concentrations.
    Shimakawa G, Ifuku K, Suzuki Y, Makino A, Ishizaki K, Fukayama H, Morita R, Sakamoto K, Nishi A, Miyake C.
    Biosci Biotechnol Biochem; 2018 Dec 09; 82(12):2072-2083. PubMed ID: 30122118
    [Abstract] [Full Text] [Related]

  • 6. Glyoxalase II from A. thaliana requires Zn(II) for catalytic activity.
    Crowder MW, Maiti MK, Banovic L, Makaroff CA.
    FEBS Lett; 1997 Dec 01; 418(3):351-4. PubMed ID: 9428743
    [Abstract] [Full Text] [Related]

  • 7. The binding of iron and zinc to glyoxalase II occurs exclusively as di-metal centers and is unique within the metallo-beta-lactamase family.
    Wenzel NF, Carenbauer AL, Pfiester MP, Schilling O, Meyer-Klaucke W, Makaroff CA, Crowder MW.
    J Biol Inorg Chem; 2004 Jun 01; 9(4):429-38. PubMed ID: 15067523
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses.
    Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL.
    Funct Integr Genomics; 2011 Jun 01; 11(2):293-305. PubMed ID: 21213008
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions.
    Feria AB, Bosch N, Sánchez A, Nieto-Ingelmo AI, de la Osa C, Echevarría C, García-Mauriño S, Monreal JA.
    Planta; 2016 Oct 01; 244(4):901-13. PubMed ID: 27306451
    [Abstract] [Full Text] [Related]

  • 12. [The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana].
    Li ZQ, Li JT, Bing J, Zhang GF.
    Yi Chuan; 2019 Jun 20; 41(6):534-547. PubMed ID: 31257201
    [Abstract] [Full Text] [Related]

  • 13. Explaining the inhibition of glyoxalase II by 9-fluorenylmethoxycarbonyl-protected glutathione derivatives.
    Yang KW, Sobieski DN, Carenbauer AL, Crawford PA, Makaroff CA, Crowder MW.
    Arch Biochem Biophys; 2003 Jun 15; 414(2):271-8. PubMed ID: 12781779
    [Abstract] [Full Text] [Related]

  • 14. Molecular characterization of glyoxalase II from Arabidopsis thaliana.
    Maiti MK, Krishnasamy S, Owen HA, Makaroff CA.
    Plant Mol Biol; 1997 Nov 15; 35(4):471-81. PubMed ID: 9349270
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Methylglyoxal induces inhibition of growth, accumulation of anthocyanin, and activation of glyoxalase I and II in Arabidopsis thaliana.
    Hoque TS, Uraji M, Hoque MA, Nakamura Y, Murata Y.
    J Biochem Mol Toxicol; 2017 Jul 15; 31(7):. PubMed ID: 28117932
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.
    Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS.
    PLoS One; 2012 Jul 15; 7(2):e32124. PubMed ID: 22355415
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.