These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 24760548

  • 1. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
    Bhattacharya P, Siegmund T.
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1019-43. PubMed ID: 24760548
    [Abstract] [Full Text] [Related]

  • 2. A computational study of systemic hydration in vocal fold collision.
    Bhattacharya P, Siegmund T.
    Comput Methods Biomech Biomed Engin; 2014 Oct; 17(16):1835-52. PubMed ID: 23531170
    [Abstract] [Full Text] [Related]

  • 3. A Computational Study of Vocal Fold Dehydration During Phonation.
    Wu L, Zhang Z.
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2938-2948. PubMed ID: 28391188
    [Abstract] [Full Text] [Related]

  • 4. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P, Kelleher JE, Siegmund T.
    J Biomech; 2015 Sep 18; 48(12):3356-63. PubMed ID: 26159059
    [Abstract] [Full Text] [Related]

  • 5. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X, Bielamowicz S, Luo H, Mittal R.
    Ann Biomed Eng; 2009 Mar 18; 37(3):625-42. PubMed ID: 19142730
    [Abstract] [Full Text] [Related]

  • 6. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA, Devine EE, Jiang JJ, Vamos AC, Tao C.
    J Voice; 2015 May 18; 29(3):265-72. PubMed ID: 25619469
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Optimized transformation of the glottal motion into a mechanical model.
    Triep M, Brücker C, Stingl M, Döllinger M.
    Med Eng Phys; 2011 Mar 18; 33(2):210-7. PubMed ID: 21115384
    [Abstract] [Full Text] [Related]

  • 11. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL, Achuthan A, Erath BD.
    J Acoust Soc Am; 2015 Feb 18; 137(2):EL158-64. PubMed ID: 25698044
    [Abstract] [Full Text] [Related]

  • 12. Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines.
    Heaton JT, Kobler JB, Ottensmeyer MP, Petrillo RH, Tynan MA, Mehta DD, Hillman RE, Zeitels SM.
    Laryngoscope; 2020 Aug 18; 130(8):1980-1988. PubMed ID: 31603575
    [Abstract] [Full Text] [Related]

  • 13. The role of glottal surface adhesion on vocal folds biomechanics.
    Bhattacharya P, Siegmund T.
    Biomech Model Mechanobiol; 2015 Apr 18; 14(2):283-95. PubMed ID: 25034504
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A canonical biomechanical vocal fold model.
    Bhattacharya P, Siegmund TH.
    J Voice; 2012 Sep 18; 26(5):535-47. PubMed ID: 22209063
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.