These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 24760548

  • 21. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR, Esling JH.
    J Speech Lang Hear Res; 2014 Apr 01; 57(2):S687-704. PubMed ID: 24687007
    [Abstract] [Full Text] [Related]

  • 22. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W, Woo P, Murry T.
    J Voice; 2014 May 01; 28(3):356-61. PubMed ID: 24412039
    [Abstract] [Full Text] [Related]

  • 23. Computational Study of the Impact of Dehydration-Induced Vocal Fold Stiffness Changes on Voice Production.
    Wu L, Zhang Z.
    J Voice; 2024 Jul 01; 38(4):836-843. PubMed ID: 35260287
    [Abstract] [Full Text] [Related]

  • 24. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ, Thomson SL.
    J Voice; 2007 May 01; 21(3):273-84. PubMed ID: 16504473
    [Abstract] [Full Text] [Related]

  • 25. Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production.
    Jiang W, Xue Q, Zheng X.
    J Biomech Eng; 2018 Dec 01; 140(12):1210081-9. PubMed ID: 30098145
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L, Pelorson X, Henrich N, Ruty N.
    J Acoust Soc Am; 2008 Nov 01; 124(5):3296-308. PubMed ID: 19045812
    [Abstract] [Full Text] [Related]

  • 32. Synchronized and Desynchronized Dynamics Observed from Physical Models of the Vocal and Ventricular Folds.
    Matsumoto T, Kanaya M, Matsushima D, Han C, Tokuda IT.
    J Voice; 2024 May 01; 38(3):572-584. PubMed ID: 34903395
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z.
    J Acoust Soc Am; 2009 Feb 01; 125(2):1091-102. PubMed ID: 19206884
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z, Neubauer J, Berry DA.
    J Acoust Soc Am; 2007 Oct 01; 122(4):2279-95. PubMed ID: 17902864
    [Abstract] [Full Text] [Related]

  • 38. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C, Zhang Y, Hottinger DG, Jiang JJ.
    J Acoust Soc Am; 2007 Oct 01; 122(4):2270-8. PubMed ID: 17902863
    [Abstract] [Full Text] [Related]

  • 39. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R, Giovanni A, Ouaknine MA.
    Rev Laryngol Otol Rhinol (Bord); 2007 Oct 01; 128(5):279-88. PubMed ID: 20387373
    [Abstract] [Full Text] [Related]

  • 40. Preliminary experiments to quantify liquid movement under mimetic vocal fold vibrational forces.
    Titze IR, Klemuk S, Lu X.
    Logoped Phoniatr Vocol; 2014 Jul 01; 39(2):50-5. PubMed ID: 24956232
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.