These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 24765676

  • 1. Deficits in cognitive function and hippocampal plasticity in GM2/GD2 synthase knockout mice.
    Sha S, Zhou L, Yin J, Takamiya K, Furukawa K, Furukawa K, Sokabe M, Chen L.
    Hippocampus; 2014 Apr; 24(4):369-82. PubMed ID: 24765676
    [Abstract] [Full Text] [Related]

  • 2. Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels.
    Aksoy-Aksel A, Manahan-Vaughan D.
    Neuroscience; 2015 Nov 19; 309():191-9. PubMed ID: 25791230
    [Abstract] [Full Text] [Related]

  • 3. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N, Gerber U, Ster J.
    J Neurosci; 2016 Nov 09; 36(45):11521-11531. PubMed ID: 27911756
    [Abstract] [Full Text] [Related]

  • 4. Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: role for L-type calcium channels and sigma-receptors.
    Sabeti J, Nelson TE, Purdy RH, Gruol DL.
    Hippocampus; 2007 Nov 09; 17(5):349-69. PubMed ID: 17330865
    [Abstract] [Full Text] [Related]

  • 5. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses.
    Kouvaros S, Papatheodoropoulos C.
    Hippocampus; 2016 Dec 09; 26(12):1542-1559. PubMed ID: 27650481
    [Abstract] [Full Text] [Related]

  • 6. In Vivo Plasticity at Hippocampal Schaffer Collateral-CA1 Synapses: Replicability of the LTP Response and Pharmacology in the Long-Evans Rat.
    Ahnaou A, White E, Biermans R, Manyakov NV, Drinkenburg WHIM.
    Neural Plast; 2020 Dec 09; 2020():6249375. PubMed ID: 33273904
    [Abstract] [Full Text] [Related]

  • 7. LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro.
    Wang Y, Rowan MJ, Anwyl R.
    J Neurophysiol; 1997 Nov 09; 78(5):2574-81. PubMed ID: 9356407
    [Abstract] [Full Text] [Related]

  • 8. Persistent activation of histamine H1 receptors in the hippocampal CA1 region enhances NMDA receptor-mediated synaptic excitation and long-term potentiation in astrocyte- and D-serine-dependent manner.
    Masuoka T, Ikeda R, Konishi S.
    Neuropharmacology; 2019 Jun 09; 151():64-73. PubMed ID: 30943384
    [Abstract] [Full Text] [Related]

  • 9. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS, Huang CC.
    Br J Pharmacol; 1997 Oct 09; 122(4):671-81. PubMed ID: 9375963
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism.
    Jiang M, Polepalli J, Chen LY, Zhang B, Südhof TC, Malenka RC.
    Mol Psychiatry; 2017 Mar 09; 22(3):375-383. PubMed ID: 27217145
    [Abstract] [Full Text] [Related]

  • 12. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3.
    Futatsugi A, Kato K, Ogura H, Li ST, Nagata E, Kuwajima G, Tanaka K, Itohara S, Mikoshiba K.
    Neuron; 1999 Nov 09; 24(3):701-13. PubMed ID: 10595520
    [Abstract] [Full Text] [Related]

  • 13. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V, Both M, Draguhn A.
    Eur J Neurosci; 2009 Mar 09; 29(6):1153-64. PubMed ID: 19302151
    [Abstract] [Full Text] [Related]

  • 14. Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C.
    Evers MR, Salmen B, Bukalo O, Rollenhagen A, Bösl MR, Morellini F, Bartsch U, Dityatev A, Schachner M.
    J Neurosci; 2002 Aug 15; 22(16):7177-94. PubMed ID: 12177213
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice.
    Lin N, Pan XD, Chen AQ, Zhu YG, Wu M, Zhang J, Chen XC.
    Behav Brain Res; 2014 Jan 01; 258():8-18. PubMed ID: 24140565
    [Abstract] [Full Text] [Related]

  • 17. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex.
    Yoshimura Y, Ohmura T, Komatsu Y.
    J Neurosci; 2003 Jul 23; 23(16):6557-66. PubMed ID: 12878697
    [Abstract] [Full Text] [Related]

  • 18. Activation of inositol 1,4,5-trisphosphate receptors during preconditioning low-frequency stimulation suppresses subsequent induction of long-term potentiation in hippocampal CA1 neurons.
    Yamazaki Y, Fujii S, Goto JI, Fujiwara H, Mikoshiba K.
    Neuroscience; 2015 Dec 17; 311():195-206. PubMed ID: 26500182
    [Abstract] [Full Text] [Related]

  • 19. Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1.
    Finley J.
    Med Hypotheses; 2018 Jul 17; 116():61-73. PubMed ID: 29857913
    [Abstract] [Full Text] [Related]

  • 20. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor.
    Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O'Carroll CM, Martin SJ, Morris RG, O'Dell TJ, Grant SG.
    J Neurosci; 2002 Nov 15; 22(22):9721-32. PubMed ID: 12427827
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.