These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


402 related items for PubMed ID: 24766535

  • 1. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization.
    Kawasaki Y, Iwasaki Y.
    J Biomater Sci Polym Ed; 2014; 25(9):895-906. PubMed ID: 24766535
    [Abstract] [Full Text] [Related]

  • 2. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine.
    Tateishi T, Kyomoto M, Kakinoki S, Yamaoka T, Ishihara K.
    J Biomed Mater Res A; 2014 May; 102(5):1342-9. PubMed ID: 23720384
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone).
    Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Nakamura K, Ishihara K.
    Biomaterials; 2010 Feb; 31(6):1017-24. PubMed ID: 19906420
    [Abstract] [Full Text] [Related]

  • 5. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives.
    Shiojima T, Inoue Y, Kyomoto M, Ishihara K.
    Acta Biomater; 2016 Aug; 40():38-45. PubMed ID: 27154499
    [Abstract] [Full Text] [Related]

  • 6. Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly(2-methacryloyloxyethyl phosphorylcholine).
    Kyomoto M, Moro T, Yamane S, Hashimoto M, Takatori Y, Ishihara K.
    Biomaterials; 2013 Oct; 34(32):7829-39. PubMed ID: 23891520
    [Abstract] [Full Text] [Related]

  • 7. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.
    Feng W, Gao X, McClung G, Zhu S, Ishihara K, Brash JL.
    Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202
    [Abstract] [Full Text] [Related]

  • 8. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes.
    Liu Y, Inoue Y, Sakata S, Kakinoki S, Yamaoka T, Ishihara K.
    J Biomater Sci Polym Ed; 2014 Oct; 25(5):474-86. PubMed ID: 24417469
    [Abstract] [Full Text] [Related]

  • 9. Photoinduced immobilization of 2-methacryloyloxyethyl phosphorylcholine polymers with different molecular architectures on a poly(ether ether ketone) surface.
    Fukazawa K, Mu M, Chen SH, Ishihara K.
    J Mater Chem B; 2022 Apr 06; 10(14):2699-2707. PubMed ID: 35113114
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Immobilization of polyphosphoesters on poly(ether ether ketone) (PEEK) for facilitating mineral coating.
    Kunomura S, Iwasaki Y.
    J Biomater Sci Polym Ed; 2019 Jul 06; 30(10):861-876. PubMed ID: 31013199
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer.
    Liu Y, Inoue Y, Mahara A, Kakinoki S, Yamaoka T, Ishihara K.
    J Biomater Sci Polym Ed; 2014 Jul 06; 25(14-15):1514-29. PubMed ID: 24894706
    [Abstract] [Full Text] [Related]

  • 14. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility.
    Yuan B, Chen Q, Ding WQ, Liu PS, Wu SS, Lin SC, Shen J, Gai Y.
    ACS Appl Mater Interfaces; 2012 Aug 06; 4(8):4031-9. PubMed ID: 22856677
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface.
    Ishihara K, Shinozuka T, Hanazaki Y, Iwasaki Y, Nakabayashi N.
    J Biomater Sci Polym Ed; 1999 Aug 06; 10(3):271-82. PubMed ID: 10189096
    [Abstract] [Full Text] [Related]

  • 17. Protein-resistant materials via surface-initiated atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine.
    Jin Z, Feng W, Zhu S, Sheardown H, Brash JL.
    J Biomater Sci Polym Ed; 2010 Aug 06; 21(10):1331-44. PubMed ID: 20534188
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials.
    Lin X, Fukazawa K, Ishihara K.
    ACS Appl Mater Interfaces; 2015 Aug 12; 7(31):17489-98. PubMed ID: 26202385
    [Abstract] [Full Text] [Related]

  • 20. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y, Onodera Y, Ishihara K.
    Colloids Surf B Biointerfaces; 2016 May 01; 141():507-512. PubMed ID: 26896657
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.