These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
289 related items for PubMed ID: 24766825
1. Comparison of methods for imputing limited-range variables: a simulation study. Rodwell L, Lee KJ, Romaniuk H, Carlin JB. BMC Med Res Methodol; 2014 Apr 26; 14():57. PubMed ID: 24766825 [Abstract] [Full Text] [Related]
4. The ability of different imputation methods for missing values in mental measurement questionnaires. Xu X, Xia L, Zhang Q, Wu S, Wu M, Liu H. BMC Med Res Methodol; 2020 Feb 27; 20(1):42. PubMed ID: 32103723 [Abstract] [Full Text] [Related]
5. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study. Lee KJ, Galati JC, Simpson JA, Carlin JB. Stat Med; 2012 Dec 30; 31(30):4164-74. PubMed ID: 22826110 [Abstract] [Full Text] [Related]
6. Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study. Floden L, Bell ML. BMC Med Res Methodol; 2019 Jul 23; 19(1):161. PubMed ID: 31345166 [Abstract] [Full Text] [Related]
8. Dealing with missing data in a multi-question depression scale: a comparison of imputation methods. Shrive FM, Stuart H, Quan H, Ghali WA. BMC Med Res Methodol; 2006 Dec 13; 6():57. PubMed ID: 17166270 [Abstract] [Full Text] [Related]
10. Multiple imputation for non-response when estimating HIV prevalence using survey data. Chinomona A, Mwambi H. BMC Public Health; 2015 Oct 16; 15():1059. PubMed ID: 26475303 [Abstract] [Full Text] [Related]
11. Multiple imputation of semi-continuous exposure variables that are categorized for analysis. Nguyen CD, Moreno-Betancur M, Rodwell L, Romaniuk H, Carlin JB, Lee KJ. Stat Med; 2021 Nov 30; 40(27):6093-6106. PubMed ID: 34423450 [Abstract] [Full Text] [Related]
12. Diagnosing problems with imputation models using the Kolmogorov-Smirnov test: a simulation study. Nguyen CD, Carlin JB, Lee KJ. BMC Med Res Methodol; 2013 Nov 20; 13():144. PubMed ID: 24252653 [Abstract] [Full Text] [Related]
14. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A, Altman DG, Royston P, Holder RL. BMC Med Res Methodol; 2010 Jan 19; 10():7. PubMed ID: 20085642 [Abstract] [Full Text] [Related]
15. Logistic regression vs. predictive mean matching for imputing binary covariates. Austin PC, van Buuren S. Stat Methods Med Res; 2023 Nov 19; 32(11):2172-2183. PubMed ID: 37750213 [Abstract] [Full Text] [Related]
16. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA, Sabia S, Brunner E, Kivimäki M, Shipley MJ. BMC Med Res Methodol; 2018 Aug 29; 18(1):89. PubMed ID: 30157752 [Abstract] [Full Text] [Related]
17. A real data-driven simulation strategy to select an imputation method for mixed-type trait data. May JA, Feng Z, Adamowicz SJ. PLoS Comput Biol; 2023 Mar 29; 19(3):e1010154. PubMed ID: 36947561 [Abstract] [Full Text] [Related]
18. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E, White IR, Sperrin M, Buchan I. BMC Med Res Methodol; 2017 Jan 09; 17(1):2. PubMed ID: 28068910 [Abstract] [Full Text] [Related]
19. Estimating range of influence in case of missing spatial data: a simulation study on binary data. Bihrmann K, Ersbøll AK. Int J Health Geogr; 2015 Jan 06; 14():1. PubMed ID: 25563056 [Abstract] [Full Text] [Related]