These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


423 related items for PubMed ID: 24767871

  • 1. Microfluidic analysis of red blood cell deformability.
    Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H.
    J Biomech; 2014 Jun 03; 47(8):1767-76. PubMed ID: 24767871
    [Abstract] [Full Text] [Related]

  • 2. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM, Guo Q, Kyluik-Price DL, Ma H, Scott MD.
    Am J Hematol; 2013 Aug 03; 88(8):682-9. PubMed ID: 23674388
    [Abstract] [Full Text] [Related]

  • 3. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM, Nielsen ND, Vignes SM, Chen TG, Shevkoplyas SS.
    Clin Hemorheol Microcirc; 2014 Aug 03; 57(3):275-89. PubMed ID: 23603326
    [Abstract] [Full Text] [Related]

  • 4. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J, Laforce-Lavoie A, Charette SJ, Shevkoplyas SS, Yoshida T, Lewin A, Brouard D.
    Transfusion; 2020 May 03; 60(5):1032-1041. PubMed ID: 32237236
    [Abstract] [Full Text] [Related]

  • 5. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G, Guido S.
    Microvasc Res; 2011 Jul 03; 82(1):35-41. PubMed ID: 21397612
    [Abstract] [Full Text] [Related]

  • 6. Microfluidic deformability analysis of the red cell storage lesion.
    Matthews K, Myrand-Lapierre ME, Ang RR, Duffy SP, Scott MD, Ma H.
    J Biomech; 2015 Nov 26; 48(15):4065-4072. PubMed ID: 26477408
    [Abstract] [Full Text] [Related]

  • 7. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K, Raju SP, Chu X, Warren M, Pandya CD, Hoda N, Fulzele S, Raju R.
    Int Immunopharmacol; 2018 Dec 26; 65():244-247. PubMed ID: 30340103
    [Abstract] [Full Text] [Related]

  • 8. Microconfined flow behavior of red blood cells.
    Tomaiuolo G, Lanotte L, D'Apolito R, Cassinese A, Guido S.
    Med Eng Phys; 2016 Jan 26; 38(1):11-6. PubMed ID: 26071649
    [Abstract] [Full Text] [Related]

  • 9. Multiplexed fluidic plunger mechanism for the measurement of red blood cell deformability.
    Myrand-Lapierre ME, Deng X, Ang RR, Matthews K, Santoso AT, Ma H.
    Lab Chip; 2015 Jan 07; 15(1):159-67. PubMed ID: 25325848
    [Abstract] [Full Text] [Related]

  • 10. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device.
    Shevkoplyas SS, Yoshida T, Gifford SC, Bitensky MW.
    Lab Chip; 2006 Jul 07; 6(7):914-20. PubMed ID: 16804596
    [Abstract] [Full Text] [Related]

  • 11. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves.
    Islamzada E, Matthews K, Guo Q, Santoso AT, Duffy SP, Scott MD, Ma H.
    Lab Chip; 2020 Jan 21; 20(2):226-235. PubMed ID: 31796943
    [Abstract] [Full Text] [Related]

  • 12. Assessing red blood cell deformability from microscopy images using deep learning.
    Lamoureux ES, Islamzada E, Wiens MVJ, Matthews K, Duffy SP, Ma H.
    Lab Chip; 2021 Dec 21; 22(1):26-39. PubMed ID: 34874395
    [Abstract] [Full Text] [Related]

  • 13. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P, Mannino RG, Caruso C, Zhang H, Josephson CD, Roback JD, Lam WA.
    Am J Hematol; 2019 Feb 21; 94(2):189-199. PubMed ID: 30417938
    [Abstract] [Full Text] [Related]

  • 14. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ, Ha YR, Lee SJ.
    Analyst; 2016 Jan 07; 141(1):319-30. PubMed ID: 26616556
    [Abstract] [Full Text] [Related]

  • 15. Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
    Sasaki T, Seki J, Itano T, Sugihara-Seki M.
    Biorheology; 2018 Jan 07; 54(5-6):153-165. PubMed ID: 29614620
    [Abstract] [Full Text] [Related]

  • 16. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.
    Lipowsky HH, Cram LE, Justice W, Eppihimer MJ.
    Microvasc Res; 1993 Jul 07; 46(1):43-64. PubMed ID: 8412852
    [Abstract] [Full Text] [Related]

  • 17. Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome.
    Saha AK, Schmidt BR, Wilhelmy J, Nguyen V, Abugherir A, Do JK, Nemat-Gorgani M, Davis RW, Ramasubramanian AK.
    Clin Hemorheol Microcirc; 2019 Jul 07; 71(1):113-116. PubMed ID: 30594919
    [Abstract] [Full Text] [Related]

  • 18. Heterogeneous red blood cell adhesion and deformability in sickle cell disease.
    Alapan Y, Little JA, Gurkan UA.
    Sci Rep; 2014 Nov 24; 4():7173. PubMed ID: 25417696
    [Abstract] [Full Text] [Related]

  • 19. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels.
    Tatsumi K, Katsumoto Y, Fujiwara R, Nakabe K.
    Sensors (Basel); 2012 Nov 24; 12(8):10566-83. PubMed ID: 23112616
    [Abstract] [Full Text] [Related]

  • 20. Inter-donor variability in deformability of red blood cells in blood units.
    Barshtein G, Rasmusen TL, Zelig O, Arbell D, Yedgar S.
    Transfus Med; 2020 Dec 24; 30(6):492-496. PubMed ID: 33015934
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.