These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
504 related items for PubMed ID: 24768819
1. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Zhou ZM, Zhou J, Chen J, Yu RN, Zhang MZ, Song JT, Zhao YD. Biosens Bioelectron; 2014 Sep 15; 59():397-403. PubMed ID: 24768819 [Abstract] [Full Text] [Related]
2. Capillary electrophoresis-chemiluminescence detection for carcino-embryonic antigen based on aptamer/graphene oxide structure. Zhou ZM, Feng Z, Zhou J, Fang BY, Qi XX, Ma ZY, Liu B, Zhao YD, Hu XB. Biosens Bioelectron; 2015 Feb 15; 64():493-8. PubMed ID: 25299985 [Abstract] [Full Text] [Related]
3. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M, Mirroshandel AA. Biosens Bioelectron; 2017 Oct 15; 96():324-331. PubMed ID: 28525850 [Abstract] [Full Text] [Related]
4. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X, Liu B, Yang C, Li C. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931 [Abstract] [Full Text] [Related]
5. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probe. Adegoke O, Pereira-Barros MA, Zolotovskaya S, Abdolvand A, Daeid NN. Mikrochim Acta; 2020 Jan 08; 187(2):104. PubMed ID: 31912290 [Abstract] [Full Text] [Related]
6. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Dong H, Gao W, Yan F, Ji H, Ju H. Anal Chem; 2010 Jul 01; 82(13):5511-7. PubMed ID: 20524633 [Abstract] [Full Text] [Related]
7. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Wang Y, Wei Z, Luo X, Wan Q, Qiu R, Wang S. Talanta; 2019 Apr 01; 195():33-39. PubMed ID: 30625551 [Abstract] [Full Text] [Related]
8. Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide. Fang BY, Yao MH, Wang CY, Wang CY, Zhao YD, Chen F. Colloids Surf B Biointerfaces; 2016 Apr 01; 140():233-238. PubMed ID: 26764106 [Abstract] [Full Text] [Related]
9. Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of Pseudomonas aeruginosa in Food Samples. Gao R, Zhong Z, Gao X, Jia L. J Agric Food Chem; 2018 Oct 17; 66(41):10898-10905. PubMed ID: 30247907 [Abstract] [Full Text] [Related]
10. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Arvand M, Mirroshandel AA. Food Chem; 2019 May 15; 280():115-122. PubMed ID: 30642476 [Abstract] [Full Text] [Related]
11. "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion. Zang Y, Lei J, Hao Q, Ju H. ACS Appl Mater Interfaces; 2014 Sep 24; 6(18):15991-7. PubMed ID: 25170538 [Abstract] [Full Text] [Related]
12. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides. Tang T, Deng J, Zhang M, Shi G, Zhou T. Talanta; 2016 Sep 24; 146():55-61. PubMed ID: 26695234 [Abstract] [Full Text] [Related]
13. Detection of lead (II) with a "turn-on" fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Li M, Zhou X, Guo S, Wu N. Biosens Bioelectron; 2013 May 15; 43():69-74. PubMed ID: 23277342 [Abstract] [Full Text] [Related]
14. A fluorescent probe composed of quantum dot labeled aptamer and graphene oxide for the determination of the lipopolysaccharide endotoxin. Wen LX, Lv JJ, Chen L, Li SB, Mou XJ, Xu Y. Mikrochim Acta; 2019 Jan 21; 186(2):122. PubMed ID: 30666423 [Abstract] [Full Text] [Related]
15. Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. Zeng X, Bao J, Han M, Tu W, Dai Z. Biosens Bioelectron; 2014 Apr 15; 54():331-8. PubMed ID: 24291752 [Abstract] [Full Text] [Related]
16. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Weng X, Neethirajan S. Biosens Bioelectron; 2016 Nov 15; 85():649-656. PubMed ID: 27240012 [Abstract] [Full Text] [Related]
17. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Anal Chem; 2012 Jul 17; 84(14):6263-70. PubMed ID: 22816786 [Abstract] [Full Text] [Related]
18. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Xu J, Shi M, Huang H, Hu K, Chen W, Huang Y, Zhao S. Analyst; 2018 Aug 06; 143(16):3918-3925. PubMed ID: 30043777 [Abstract] [Full Text] [Related]
19. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Xing XJ, Liu XG, Yue-He, Luo QY, Tang HW, Pang DW. Biosens Bioelectron; 2012 Aug 06; 37(1):61-7. PubMed ID: 22613226 [Abstract] [Full Text] [Related]
20. Simultaneous quantitative detection of multiple tumor markers in microfluidic nanoliter-volume droplets. Zhang Y, Ye W, Yang C, Xu Z. Talanta; 2019 Dec 01; 205():120096. PubMed ID: 31450456 [Abstract] [Full Text] [Related] Page: [Next] [New Search]