These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 24784622

  • 1. Moissanite anvil cell design for Giga-Pascal nuclear magnetic resonance.
    Meier T, Herzig T, Haase J.
    Rev Sci Instrum; 2014 Apr; 85(4):043903. PubMed ID: 24784622
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Anvil cell gasket design for high pressure nuclear magnetic resonance experiments beyond 30 GPa.
    Meier T, Haase J.
    Rev Sci Instrum; 2015 Dec; 86(12):123906. PubMed ID: 26724046
    [Abstract] [Full Text] [Related]

  • 7. Note: Moissanite backing plates for use in diamond anvil high pressure cells.
    Pugh E.
    Rev Sci Instrum; 2016 Mar; 87(3):036102. PubMed ID: 27036835
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.
    Giriat G, Wang W, Attfield JP, Huxley AD, Kamenev KV.
    Rev Sci Instrum; 2010 Jul; 81(7):073905. PubMed ID: 20687740
    [Abstract] [Full Text] [Related]

  • 10. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer.
    Tateiwa N, Haga Y, Fisk Z, Ōnuki Y.
    Rev Sci Instrum; 2011 May; 82(5):053906. PubMed ID: 21639517
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer.
    Tateiwa N, Haga Y, Matsuda TD, Fisk Z.
    Rev Sci Instrum; 2012 May; 83(5):053906. PubMed ID: 22667632
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Patterned anvils for high pressure measurements at low temperature.
    Welzel OP, Grosche FM.
    Rev Sci Instrum; 2011 Mar; 82(3):033901. PubMed ID: 21456757
    [Abstract] [Full Text] [Related]

  • 17. Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell.
    O'Bannon EF, Jenei Z, Cynn H, Lipp MJ, Jeffries JR.
    Rev Sci Instrum; 2018 Nov; 89(11):111501. PubMed ID: 30501343
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar.
    Dubrovinsky L, Dubrovinskaia N, Prakapenka VB, Abakumov AM.
    Nat Commun; 2012 Nov; 3():1163. PubMed ID: 23093199
    [Abstract] [Full Text] [Related]

  • 20. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S, Ginefri JC, Poirier-Quinot M, Darrasse L.
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.