These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 24784825
1. Determination of tert-butylhydroquinone in vegetable oils using surface-enhanced Raman spectroscopy. Pan Y, Lai K, Fan Y, Li C, Pei L, Rasco BA, Huang Y. J Food Sci; 2014 Jun; 79(6):T1225-30. PubMed ID: 24784825 [Abstract] [Full Text] [Related]
2. Simultaneous Analysis of Tertiary Butylhydroquinone and 2-tert-Butyl-1,4-benzoquinone in Edible Oils by Normal-Phase High-Performance Liquid Chromatography. Li J, Bi Y, Liu W, Sun S. J Agric Food Chem; 2015 Sep 30; 63(38):8584-91. PubMed ID: 26365419 [Abstract] [Full Text] [Related]
3. Antioxidative Properties and Interconversion of tert-Butylhydroquinone and tert-Butylquinone in Soybean Oils. Li J, Bi Y, Yang H, Wang D. J Agric Food Chem; 2017 Dec 06; 65(48):10598-10603. PubMed ID: 29129059 [Abstract] [Full Text] [Related]
4. Gas-liquid chromatographic determination of tertiary-butylhydroquinone (TBHQ) in dried fish, frozen shrimp, vegetable oils, butter, and margarine. Toyoda M, Ogawa S, Tonogai Y, Ito Y, Iwaida M. J Assoc Off Anal Chem; 1980 Sep 06; 63(5):1135-7. PubMed ID: 7410305 [Abstract] [Full Text] [Related]
5. Distribution of 2-tert-butyl-1,4-benzoquinone and its precursor, tert-butylhydroquinone, in typical edible oils and oleaginous foods marketed in Hangzhou City, China. Yu N, Ye Q, Nie X, Xia C, Meng X. Food Chem; 2021 Nov 01; 361():130039. PubMed ID: 34022482 [Abstract] [Full Text] [Related]
6. [Research on prediction method of fatty acid content in edible oil based on Raman spectroscopy and multi-output least squares support vector regression machine]. Deng ZY, Zhang B, Dong W, Wang XP. Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov 01; 33(11):2997-3001. PubMed ID: 24555368 [Abstract] [Full Text] [Related]
7. Photoelectrochemical determination of tert-butylhydroquinone in edible oil samples employing CdSe/ZnS quantum dots and LiTCNE. Monteiro TO, Tanaka AA, Damos FS, Luz RC. Food Chem; 2017 Jul 15; 227():16-21. PubMed ID: 28274417 [Abstract] [Full Text] [Related]
8. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Yue X, Luo X, Zhou Z, Bai Y. Food Chem; 2019 Aug 15; 289():84-94. PubMed ID: 30955677 [Abstract] [Full Text] [Related]
9. Highly Sensitive and Selective Determination of Tertiary Butylhydroquinone in Edible Oils by Competitive Reaction Induced "On-Off-On" Fluorescent Switch. Yue X, Zhu W, Ma S, Yu S, Zhang Y, Wang J, Wang Y, Zhang D, Wang J. J Agric Food Chem; 2016 Jan 27; 64(3):706-13. PubMed ID: 26746696 [Abstract] [Full Text] [Related]
10. [Research on detection method of adulterated olive oil by Raman spectroscopy and least squares support vector machine]. Zhang YQ, Dong W, Zhang B, Wang XP. Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun 27; 32(6):1554-8. PubMed ID: 22870638 [Abstract] [Full Text] [Related]
11. Regeneration of tert-butylhydroquinone by tea polyphenols. Guo Y, Guo Y, Xie Y, Cheng Y, Qian H, Yao W. Food Res Int; 2017 May 27; 95():1-8. PubMed ID: 28395816 [Abstract] [Full Text] [Related]
12. Rapid determination of butylated hydroxyanisole, tert- butylhydroquinone, and propyl gallate in edible oils by electron capture gas-liquid chromatography. Page BD, Kennedy BP. J Assoc Off Anal Chem; 1976 Nov 27; 59(6):1208-12. PubMed ID: 993173 [Abstract] [Full Text] [Related]
13. Deep eutectic solvents as switchable solvents for highly efficient liquid-liquid microextraction of phenolic antioxidant: Easily tracking the original TBHQ in edible oils. Liu W, Zong B, Wang X, Yang G, Yu J. Food Chem; 2022 May 30; 377():131946. PubMed ID: 34979403 [Abstract] [Full Text] [Related]
14. Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography. Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M. Food Chem; 2016 Jun 01; 200():249-54. PubMed ID: 26830586 [Abstract] [Full Text] [Related]
15. Ultrasensitive SERS quantitative detection of antioxidants via diazo derivatization reaction and deep learning for signal fluctuation mitigation. Li W, Chen Y, Li X, Zhong Y, Xu P, Teng Y. Spectrochim Acta A Mol Biomol Spectrosc; 2024 May 15; 313():124086. PubMed ID: 38442618 [Abstract] [Full Text] [Related]
16. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy. Lian WN, Shiue J, Wang HH, Hong WC, Shih PH, Hsu CK, Huang CY, Hsing CR, Wei CM, Wang JK, Wang YL. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015 May 15; 32(5):627-34. PubMed ID: 25822695 [Abstract] [Full Text] [Related]
17. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis. Peng D, Bi Y, Ren X, Yang G, Sun S, Wang X. Food Chem; 2015 Dec 01; 188():415-21. PubMed ID: 26041212 [Abstract] [Full Text] [Related]
18. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy. Du S, Su M, Jiang Y, Yu F, Xu Y, Lou X, Yu T, Liu H. ACS Sens; 2019 Jul 26; 4(7):1798-1805. PubMed ID: 31251024 [Abstract] [Full Text] [Related]
19. Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. Feng S, Gao F, Chen Z, Grant E, Kitts DD, Wang S, Lu X. J Agric Food Chem; 2013 Nov 06; 61(44):10467-75. PubMed ID: 24099154 [Abstract] [Full Text] [Related]
20. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry. Zhang W, Li N, Feng Y, Su S, Li T, Liang B. Food Chem; 2015 Oct 15; 185():326-32. PubMed ID: 25952875 [Abstract] [Full Text] [Related] Page: [Next] [New Search]