These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


537 related items for PubMed ID: 24793408

  • 1. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA, Wilson LJ, Langton C, Epari D.
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [Abstract] [Full Text] [Related]

  • 2. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł, Binkowski M, Kokot G, Rusin T, Popik P, Bolechała F, Nowak R, Wróbel Z, John A.
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [Abstract] [Full Text] [Related]

  • 3. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC, van der Meulen MC.
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [Abstract] [Full Text] [Related]

  • 4. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone.
    Chang EY, Bae WC, Shao H, Biswas R, Li S, Chen J, Patil S, Healey R, D'Lima DD, Chung CB, Du J.
    NMR Biomed; 2015 Jul; 28(7):873-80. PubMed ID: 25981914
    [Abstract] [Full Text] [Related]

  • 5. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach.
    Haïat G, Padilla F, Svrcekova M, Chevalier Y, Pahr D, Peyrin F, Laugier P, Zysset P.
    J Biomech; 2009 Sep 18; 42(13):2033-9. PubMed ID: 19646703
    [Abstract] [Full Text] [Related]

  • 6. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.
    Nazemi SM, Amini M, Kontulainen SA, Milner JS, Holdsworth DW, Masri BA, Wilson DR, Johnston JD.
    Clin Biomech (Bristol); 2015 Aug 18; 30(7):703-12. PubMed ID: 26024555
    [Abstract] [Full Text] [Related]

  • 7. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships.
    Tuncer M, Hansen UN, Amis AA.
    Med Eng Phys; 2014 Aug 18; 36(8):991-7; discussion 991. PubMed ID: 24907128
    [Abstract] [Full Text] [Related]

  • 8. Elasticity-density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements.
    Bernard S, Schneider J, Varga P, Laugier P, Raum K, Grimal Q.
    Biomech Model Mechanobiol; 2016 Feb 18; 15(1):97-109. PubMed ID: 26070349
    [Abstract] [Full Text] [Related]

  • 9. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L, Vanderoost J, Jaecques S, Boonen S, D'hooge J, Lauriks W, Van der Perre G.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb 18; 55(6):1234-42. PubMed ID: 18599411
    [Abstract] [Full Text] [Related]

  • 10. Fabric dependence of bone ultrasound.
    Cowin SC, Cardoso L.
    Acta Bioeng Biomech; 2010 Feb 18; 12(2):3-23. PubMed ID: 20882938
    [Abstract] [Full Text] [Related]

  • 11. ShearWave elastography: repeatability for measurement of tendon stiffness.
    Peltz CD, Haladik JA, Divine G, Siegal D, van Holsbeeck M, Bey MJ.
    Skeletal Radiol; 2013 Aug 18; 42(8):1151-6. PubMed ID: 23640400
    [No Abstract] [Full Text] [Related]

  • 12. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA, Sebaa N, Fellah M, Mitri FG, Ogam E, Lauriks W, Depollier C.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul 18; 55(7):1508-15. PubMed ID: 18986940
    [Abstract] [Full Text] [Related]

  • 13. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA, Day JS, Töyräs J, Timonen M, Kröger H, Weinans H, Kiviranta I, Jurvelin JS.
    Phys Med Biol; 2005 Apr 21; 50(8):1629-42. PubMed ID: 15815086
    [Abstract] [Full Text] [Related]

  • 14. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S, Luo Y.
    Biomed Mater Eng; 2014 Apr 21; 24(6):2619-26. PubMed ID: 25226965
    [Abstract] [Full Text] [Related]

  • 15. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V, Quenneville CE.
    Proc Inst Mech Eng H; 2016 Jun 21; 230(6):588-93. PubMed ID: 27068841
    [Abstract] [Full Text] [Related]

  • 16. Ultrasound speed varies in articular cartilage under indentation loading.
    Lötjönen P, Julkunen P, Tiitu V, Jurvelin JS, Töyräs J.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec 21; 58(12):2772-80. PubMed ID: 23443716
    [Abstract] [Full Text] [Related]

  • 17. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM.
    J Biomech; 2004 Jan 21; 37(1):27-35. PubMed ID: 14672565
    [Abstract] [Full Text] [Related]

  • 18. Ultrasound and the biomechanical competence of bone.
    Nicholson PF.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul 21; 55(7):1539-45. PubMed ID: 18986944
    [Abstract] [Full Text] [Related]

  • 19. The preliminary evaluation of a 1 MHz ultrasound probe for measuring the elastic anisotropy of human cortical bone.
    Daugschies M, Rohde K, Glüer CC, Barkmann R.
    Ultrasonics; 2014 Jan 21; 54(1):4-10. PubMed ID: 23896622
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.