These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


106 related items for PubMed ID: 24801407

  • 21. Sago pith residue as an alternative cheap substrate for fermentable sugars production.
    Linggang S, Phang LY, Wasoh MH, Abd-Aziz S.
    Appl Biochem Biotechnol; 2012 May; 167(1):122-31. PubMed ID: 22528646
    [Abstract] [Full Text] [Related]

  • 22. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus.
    Mohapatra S, Padhy S, Das Mohapatra PK, Thatoi HN.
    Bioresour Technol; 2018 Apr; 253():262-272. PubMed ID: 29353755
    [Abstract] [Full Text] [Related]

  • 23. A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry.
    Kim KH, Brown KM, Harris PV, Langston JA, Cherry JR.
    J Proteome Res; 2007 Dec; 6(12):4749-57. PubMed ID: 18020405
    [Abstract] [Full Text] [Related]

  • 24. Comparative production of cellulases by mutants of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose.
    Singhvi MS, Adsul MG, Gokhale DV.
    Bioresour Technol; 2011 Jun; 102(11):6569-72. PubMed ID: 21300541
    [Abstract] [Full Text] [Related]

  • 25. Comparative analysis of thermostability of extracellular inulinase activity from Aspergillus fumigatus with commercially available (Novozyme) inulinase.
    Gill PK, Manhas RK, Singh P.
    Bioresour Technol; 2006 Jan; 97(2):355-8. PubMed ID: 16171693
    [Abstract] [Full Text] [Related]

  • 26. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation.
    Rodríguez-Zúñiga UF, Bertucci Neto V, Couri S, Crestana S, Farinas CS.
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2348-62. PubMed ID: 24363237
    [Abstract] [Full Text] [Related]

  • 27. Microbial cellulase production and stability investigations via graphene like carbon nanostructure derived from paddy straw.
    Srivastava N, Singh R, Verma B, Rai AK, Tripathi SC, Bantun F, Faidah H, Singh RP, Jalal NA, Abdel-Razik NE, Haque S.
    Int J Biol Macromol; 2023 May 15; 237():124033. PubMed ID: 36918076
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Mixed cultivation of Trichoderma reesei and Aspergillus ochraceus for improved cellulase production.
    Chadha BS, Garcha HS.
    Acta Microbiol Hung; 1992 May 15; 39(1):61-7. PubMed ID: 1632200
    [Abstract] [Full Text] [Related]

  • 30. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis.
    Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M.
    Bioresour Technol; 2013 May 15; 135():2-6. PubMed ID: 23419989
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa.
    Angajala G, Ramya R, Subashini R.
    Acta Trop; 2014 Jul 15; 135():19-26. PubMed ID: 24681220
    [Abstract] [Full Text] [Related]

  • 34. Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin.
    de Castro AM, Pedro KC, da Cruz JC, Ferreira MC, Leite SG, Pereira N.
    Appl Biochem Biotechnol; 2010 Nov 15; 162(7):2111-22. PubMed ID: 20455032
    [Abstract] [Full Text] [Related]

  • 35. Evaluation of cellulases produced from four fungi cultured on furfural residues and microcrystalline cellulose.
    Liu HQ, Feng Y, Zhao DQ, Jiang JX.
    Biodegradation; 2012 Jun 15; 23(3):465-72. PubMed ID: 22116409
    [Abstract] [Full Text] [Related]

  • 36. Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6.
    García-Kirchner O, Segura-Granados M, Rodríguez-Pascual P.
    Appl Biochem Biotechnol; 2005 Jun 15; 121-124():347-59. PubMed ID: 15917612
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Cellulase production from Aspergillus niger MS82: effect of temperature and pH.
    Sohail M, Siddiqi R, Ahmad A, Khan SA.
    N Biotechnol; 2009 Sep 15; 25(6):437-41. PubMed ID: 19552887
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M, Chandra RP, Saddler JN.
    Biotechnol Prog; 2007 Sep 15; 23(2):398-406. PubMed ID: 17378581
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.