These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 24802146
1. Phenotypic plasticity in thermal tolerance in the Glanville fritillary butterfly. Luo S, Chong Wong S, Xu C, Hanski I, Wang R, Lehtonen R. J Therm Biol; 2014 May; 42():33-9. PubMed ID: 24802146 [Abstract] [Full Text] [Related]
2. Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress. Luo S, Ahola V, Shu C, Xu C, Wang R. Gene; 2015 Feb 10; 556(2):132-41. PubMed ID: 25433328 [Abstract] [Full Text] [Related]
3. Three amino acid substitutions contributing to thermostability of phosphoglucose isomerase in the Glanville fritillary butterfly. Yang J, Wang D, Liu H, Wang L, Jin L, Ahola V, Xu C, Wang R. Insect Sci; 2023 Jun 10; 30(3):758-770. PubMed ID: 36342954 [Abstract] [Full Text] [Related]
4. Fitness differences associated with Pgi SNP genotypes in the Glanville fritillary butterfly (Melitaea cinxia). Orsini L, Wheat CW, Haag CR, Kvist J, Frilander MJ, Hanski I. J Evol Biol; 2009 Feb 10; 22(2):367-75. PubMed ID: 19032494 [Abstract] [Full Text] [Related]
7. HSP70 expression in the Copper butterfly Lycaena tityrus across altitudes and temperatures. Karl I, Sørensen JG, Loeschcke V, Fischer K. J Evol Biol; 2009 Jan 10; 22(1):172-8. PubMed ID: 19120817 [Abstract] [Full Text] [Related]
10. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly. Wong SC, Oksanen A, Mattila AL, Lehtonen R, Niitepõld K, Hanski I. J Insect Physiol; 2016 Feb 10; 85():23-31. PubMed ID: 26658138 [Abstract] [Full Text] [Related]
11. Plastic larval development in a butterfly has complex environmental and genetic causes and consequences for population dynamics. Saastamoinen M, Ikonen S, Wong SC, Lehtonen R, Hanski I. J Anim Ecol; 2013 May 10; 82(3):529-39. PubMed ID: 23347450 [Abstract] [Full Text] [Related]
14. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change. Dahlhoff EP, Fearnley SL, Bruce DA, Gibbs AG, Stoneking R, McMillan DM, Deiner K, Smiley JT, Rank NE. Physiol Biochem Zool; 2008 May 10; 81(6):718-32. PubMed ID: 18956974 [Abstract] [Full Text] [Related]
15. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. Sørensen JG, Loeschcke V, Kristensen TN. J Exp Biol; 2013 Mar 01; 216(Pt 5):809-14. PubMed ID: 23155086 [Abstract] [Full Text] [Related]
17. Significant effects of Pgi genotype and body reserves on lifespan in the Glanville fritillary butterfly. Saastamoinen M, Ikonen S, Hanski I. Proc Biol Sci; 2009 Apr 07; 276(1660):1313-22. PubMed ID: 19129143 [Abstract] [Full Text] [Related]
18. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Kvist J, Wheat CW, Kallioniemi E, Saastamoinen M, Hanski I, Frilander MJ. Mol Ecol; 2013 Feb 07; 22(3):602-19. PubMed ID: 22429304 [Abstract] [Full Text] [Related]
19. Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Marden JH, Ovaskainen O, Hanski I. Ecology; 2009 Aug 07; 90(8):2223-32. PubMed ID: 19739384 [Abstract] [Full Text] [Related]
20. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. Dahlhoff EP, Rank NE. Proc Natl Acad Sci U S A; 2000 Aug 29; 97(18):10056-61. PubMed ID: 10944188 [Abstract] [Full Text] [Related] Page: [Next] [New Search]