These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


64 related items for PubMed ID: 24803023

  • 21. Protein complex prediction via cost-based clustering.
    King AD, Przulj N, Jurisica I.
    Bioinformatics; 2004 Nov 22; 20(17):3013-20. PubMed ID: 15180928
    [Abstract] [Full Text] [Related]

  • 22. A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks.
    Xiao Q, Luo P, Li M, Wang J, Wu FX.
    Proteomics; 2019 Mar 22; 19(5):e1800129. PubMed ID: 30650262
    [Abstract] [Full Text] [Related]

  • 23. Weighted edge based clustering to identify protein complexes in protein-protein interaction networks incorporating gene expression profile.
    Keretsu S, Sarmah R.
    Comput Biol Chem; 2016 Dec 22; 65():69-79. PubMed ID: 27771556
    [Abstract] [Full Text] [Related]

  • 24. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach.
    Mukhopadhyay A, Ray S, De M.
    Mol Biosyst; 2012 Nov 22; 8(11):3036-48. PubMed ID: 22990765
    [Abstract] [Full Text] [Related]

  • 25. Combining gene expression profiles and protein-protein interaction data to infer gene functions.
    Tu K, Yu H, Li YX.
    J Biotechnol; 2006 Jul 25; 124(3):475-85. PubMed ID: 16530869
    [Abstract] [Full Text] [Related]

  • 26. Identifying protein complexes based on multiple topological structures in PPI networks.
    Chen B, Wu FX.
    IEEE Trans Nanobioscience; 2013 Sep 25; 12(3):165-72. PubMed ID: 23974659
    [Abstract] [Full Text] [Related]

  • 27. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS, Xu K, Wilkins MR.
    J Proteome Res; 2011 Oct 07; 10(10):4744-56. PubMed ID: 21842913
    [Abstract] [Full Text] [Related]

  • 28. Modular organization of protein interaction networks.
    Luo F, Yang Y, Chen CF, Chang R, Zhou J, Scheuermann RH.
    Bioinformatics; 2007 Jan 15; 23(2):207-14. PubMed ID: 17092991
    [Abstract] [Full Text] [Related]

  • 29. Discovering functional interdependence relationship in PPI networks for protein complex identification.
    Lam WW, Chan KC.
    IEEE Trans Biomed Eng; 2012 Apr 15; 59(4):899-908. PubMed ID: 21095855
    [Abstract] [Full Text] [Related]

  • 30. A method based on local density and random walks for complexes detection in protein interaction networks.
    Yu L, Gao L, Li K.
    J Bioinform Comput Biol; 2010 Dec 15; 8 Suppl 1():47-62. PubMed ID: 21155019
    [Abstract] [Full Text] [Related]

  • 31. Detection of protein complexes using a protein ranking algorithm.
    Zaki N, Berengueres J, Efimov D.
    Proteins; 2012 Oct 15; 80(10):2459-68. PubMed ID: 22685080
    [Abstract] [Full Text] [Related]

  • 32. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C, Moscariello M, Ederle S, Fasano R, Lanzuolo C, Pulitzer JF.
    Gene; 2007 Jun 15; 395(1-2):72-85. PubMed ID: 17400406
    [Abstract] [Full Text] [Related]

  • 33. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality.
    Hart GT, Lee I, Marcotte ER.
    BMC Bioinformatics; 2007 Jul 02; 8():236. PubMed ID: 17605818
    [Abstract] [Full Text] [Related]

  • 34. A new method for predicting essential proteins based on dynamic network topology and complex information.
    Luo J, Kuang L.
    Comput Biol Chem; 2014 Oct 02; 52():34-42. PubMed ID: 25179858
    [Abstract] [Full Text] [Related]

  • 35. A local average connectivity-based method for identifying essential proteins from the network level.
    Li M, Wang J, Chen X, Wang H, Pan Y.
    Comput Biol Chem; 2011 Jun 02; 35(3):143-50. PubMed ID: 21704260
    [Abstract] [Full Text] [Related]

  • 36. Sampling strategy for protein complex prediction using cluster size frequency.
    Tatsuke D, Maruyama O.
    Gene; 2013 Apr 10; 518(1):152-8. PubMed ID: 23235119
    [Abstract] [Full Text] [Related]

  • 37. A Gibbs sampler for the identification of gene expression and network connectivity consistency.
    Brynildsen MP, Tran LM, Liao JC.
    Bioinformatics; 2006 Dec 15; 22(24):3040-6. PubMed ID: 17060361
    [Abstract] [Full Text] [Related]

  • 38. Identifying protein complexes from heterogeneous biological data.
    Wu M, Xie Z, Li X, Kwoh CK, Zheng J.
    Proteins; 2013 Nov 15; 81(11):2023-33. PubMed ID: 23852772
    [Abstract] [Full Text] [Related]

  • 39. Identifying dynamic network modules with temporal and spatial constraints.
    Jin R, McCallen S, Liu CC, Xiang Y, Almaas E, Zhou XJ.
    Pac Symp Biocomput; 2009 Nov 15; ():203-14. PubMed ID: 19209702
    [Abstract] [Full Text] [Related]

  • 40. A matrix based algorithm for Protein-Protein Interaction prediction using Domain-Domain Associations.
    Binny Priya S, Saha S, Anishetty R, Anishetty S.
    J Theor Biol; 2013 Jun 07; 326():36-42. PubMed ID: 23473859
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.