These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2126 related items for PubMed ID: 24803644

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effect of Leap Motion-based 3D Immersive Virtual Reality Usage on Upper Extremity Function in Ischemic Stroke Patients.
    Ögün MN, Kurul R, Yaşar MF, Turkoglu SA, Avci Ş, Yildiz N.
    Arq Neuropsiquiatr; 2019; 77(10):681-688. PubMed ID: 31664343
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke: a randomized controlled trial.
    Long Y, Ouyang RG, Zhang JQ.
    J Neuroeng Rehabil; 2020 Nov 13; 17(1):150. PubMed ID: 33187532
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. An Innovative STRoke Interactive Virtual thErapy (STRIVE) Online Platform for Community-Dwelling Stroke Survivors: A Randomized Controlled Trial.
    Johnson L, Bird ML, Muthalib M, Teo WP.
    Arch Phys Med Rehabil; 2020 Jul 13; 101(7):1131-1137. PubMed ID: 32283048
    [Abstract] [Full Text] [Related]

  • 9. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke.
    Lee SJ, Chun MH.
    Arch Phys Med Rehabil; 2014 Mar 13; 95(3):431-8. PubMed ID: 24239790
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D, Chevalley O, Schmidlin T, Garipelli G, Serino A, Vuadens P, Tadi T, Blanke O, Millán JDR.
    J Neuroeng Rehabil; 2017 Nov 17; 14(1):119. PubMed ID: 29149855
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Non-immersive Virtual Reality Rehabilitation Applied to a Task-oriented Approach for Stroke Patients: A Randomized Controlled Trial.
    Lee HS, Lim JH, Jeon BH, Song CS.
    Restor Neurol Neurosci; 2020 Nov 17; 38(2):165-172. PubMed ID: 32176674
    [Abstract] [Full Text] [Related]

  • 16. A controlled pilot trial of two commercial video games for rehabilitation of arm function after stroke.
    Chen MH, Huang LL, Lee CF, Hsieh CL, Lin YC, Liu H, Chen MI, Lu WS.
    Clin Rehabil; 2015 Jul 17; 29(7):674-82. PubMed ID: 25322868
    [Abstract] [Full Text] [Related]

  • 17. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke.
    Aşkın A, Atar E, Koçyiğit H, Tosun A.
    Somatosens Mot Res; 2018 Mar 17; 35(1):25-32. PubMed ID: 29529919
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study.
    Park M, Ko MH, Oh SW, Lee JY, Ham Y, Yi H, Choi Y, Ha D, Shin JH.
    J Neuroeng Rehabil; 2019 Oct 24; 16(1):122. PubMed ID: 31651335
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 107.