These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


91 related items for PubMed ID: 2480832

  • 1. Slow component B protein kinetics in optic nerve and tract windows.
    Paggi P, Lasek RJ, Katz MJ.
    Brain Res; 1989 Dec 18; 504(2):223-30. PubMed ID: 2480832
    [Abstract] [Full Text] [Related]

  • 2. Axonal transport of actin: slow component b is the principal source of actin for the axon.
    Black MM, Lasek RJ.
    Brain Res; 1979 Aug 10; 171(3):401-13. PubMed ID: 89886
    [Abstract] [Full Text] [Related]

  • 3. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ, Paggi P, Katz MJ.
    J Cell Biol; 1992 May 10; 117(3):607-16. PubMed ID: 1374068
    [Abstract] [Full Text] [Related]

  • 4. Cytomatrix protein residence times differ significantly between the tract and the terminal segments of optic axons.
    Paggi P, Lasek RJ, Katz MJ.
    Brain Res; 1990 May 28; 517(1-2):143-50. PubMed ID: 1695860
    [Abstract] [Full Text] [Related]

  • 5. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.
    McQuarrie IG, Brady ST, Lasek RJ.
    J Neurosci; 1986 Jun 28; 6(6):1593-605. PubMed ID: 2423662
    [Abstract] [Full Text] [Related]

  • 6. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons.
    Nixon RA, Brown BA, Marotta CA.
    J Cell Biol; 1982 Jul 28; 94(1):150-8. PubMed ID: 6181078
    [Abstract] [Full Text] [Related]

  • 7. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA, Lewis SE, Dahl D, Marotta CA, Drager UC.
    Brain Res Mol Brain Res; 1989 Mar 28; 5(2):93-108. PubMed ID: 2469928
    [Abstract] [Full Text] [Related]

  • 8. Axonal transport of [35S]methionine labeled proteins in Xenopus optic nerve: phases of transport and the effects of nerve crush on protein patterns.
    Szaro BG, Faulkner LA, Hunt RK, Loh YP.
    Brain Res; 1984 Apr 16; 297(2):337-55. PubMed ID: 6202364
    [Abstract] [Full Text] [Related]

  • 9. Slow components of axonal transport: two cytoskeletal networks.
    Black MM, Lasek RJ.
    J Cell Biol; 1980 Aug 16; 86(2):616-23. PubMed ID: 6156946
    [Abstract] [Full Text] [Related]

  • 10. Calcium/calmodulin-dependent protein kinase IIalpha in optic axons moves with slow axonal transport and undergoes posttranslational modification.
    Lund LM, McQuarrie IG.
    Biochem Biophys Res Commun; 2001 Dec 21; 289(5):1157-61. PubMed ID: 11741313
    [Abstract] [Full Text] [Related]

  • 11. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE, Nixon RA.
    J Cell Biol; 1988 Dec 21; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [Abstract] [Full Text] [Related]

  • 12. Clathrin is axonally transported as part of slow component b: the microfilament complex.
    Garner JA, Lasek RJ.
    J Cell Biol; 1981 Jan 21; 88(1):172-8. PubMed ID: 6162851
    [Abstract] [Full Text] [Related]

  • 13. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.
    Nixon RA, Fischer I, Lewis SE.
    J Cell Biol; 1990 Feb 21; 110(2):437-48. PubMed ID: 1688856
    [Abstract] [Full Text] [Related]

  • 14. Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging.
    McQuarrie IG, Brady ST, Lasek RJ.
    Neurobiol Aging; 1989 Feb 21; 10(4):359-65. PubMed ID: 2478905
    [Abstract] [Full Text] [Related]

  • 15. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins.
    Nixon RA.
    Brain Res; 1980 Oct 27; 200(1):69-83. PubMed ID: 6158362
    [Abstract] [Full Text] [Related]

  • 16. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons.
    Brown BA, Nixon RA, Marotta CA.
    J Cell Biol; 1982 Jul 27; 94(1):159-64. PubMed ID: 6181079
    [Abstract] [Full Text] [Related]

  • 17. Hypothyroidism selectively reduces the rate and amount of transport for specific SCb proteins in the hyt/hyt mouse optic nerve.
    Stein SA, McIntire DD, Kirkpatrick LL, Adams PM, Brady ST.
    J Neurosci Res; 1991 Sep 27; 30(1):28-41. PubMed ID: 1724471
    [Abstract] [Full Text] [Related]

  • 18. Stable clathrin: uncoating protein (hsc70) complexes in intact neurons and their axonal transport.
    Black MM, Chestnut MH, Pleasure IT, Keen JH.
    J Neurosci; 1991 May 27; 11(5):1163-72. PubMed ID: 1709204
    [Abstract] [Full Text] [Related]

  • 19. Axonal transport of clathrin-associated proteins.
    Gower DJ, Tytell M.
    Brain Res; 1987 Mar 24; 407(1):1-8. PubMed ID: 2438001
    [Abstract] [Full Text] [Related]

  • 20. Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons.
    Nixon RA, Lewis SE, Marotta CA.
    J Neurosci; 1987 Apr 24; 7(4):1145-58. PubMed ID: 2437257
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.