These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 24811193
1. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Deng H, Shen W, Ren Y, Gao Z. Biosens Bioelectron; 2014 Oct 15; 60():195-200. PubMed ID: 24811193 [Abstract] [Full Text] [Related]
2. A label-free microRNA biosensor based on DNAzyme-catalyzed and microRNA-guided formation of a thin insulating polymer film. Shen W, Deng H, Ren Y, Gao Z. Biosens Bioelectron; 2013 Jun 15; 44():171-6. PubMed ID: 23425556 [Abstract] [Full Text] [Related]
3. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Cai B, Huang L, Zhang H, Sun Z, Zhang Z, Zhang GJ. Biosens Bioelectron; 2015 Dec 15; 74():329-34. PubMed ID: 26159152 [Abstract] [Full Text] [Related]
4. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps. Fan Y, Chen X, Trigg AD, Tung CH, Kong J, Gao Z. J Am Chem Soc; 2007 May 02; 129(17):5437-43. PubMed ID: 17411036 [Abstract] [Full Text] [Related]
5. A novel and versatile sensing platform based on HRP-mimicking DNAzyme-catalyzed template-guided deposition of polyaniline. Li F, Yang L, Chen M, Qian Y, Tang B. Biosens Bioelectron; 2013 Mar 15; 41():903-6. PubMed ID: 23079339 [Abstract] [Full Text] [Related]
6. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Ren Y, Deng H, Shen W, Gao Z. Anal Chem; 2013 May 07; 85(9):4784-9. PubMed ID: 23594156 [Abstract] [Full Text] [Related]
7. Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Peng Y, Gao Z. Anal Chem; 2011 Feb 01; 83(3):820-7. PubMed ID: 21207998 [Abstract] [Full Text] [Related]
8. A label-free biosensor for electrochemical detection of femtomolar microRNAs. Gao Z, Deng H, Shen W, Ren Y. Anal Chem; 2013 Feb 05; 85(3):1624-30. PubMed ID: 23323518 [Abstract] [Full Text] [Related]
9. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Rafiee-Pour HA, Behpour M, Keshavarz M. Biosens Bioelectron; 2016 Mar 15; 77():202-7. PubMed ID: 26409019 [Abstract] [Full Text] [Related]
10. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. Miao P, Wang B, Chen X, Li X, Tang Y. ACS Appl Mater Interfaces; 2015 Mar 25; 7(11):6238-43. PubMed ID: 25738985 [Abstract] [Full Text] [Related]
11. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Hu T, Zhang L, Wen W, Zhang X, Wang S. Biosens Bioelectron; 2016 Mar 15; 77():451-6. PubMed ID: 26453906 [Abstract] [Full Text] [Related]
12. A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs. Gao Z, Peng Y. Biosens Bioelectron; 2011 May 15; 26(9):3768-73. PubMed ID: 21420848 [Abstract] [Full Text] [Related]
13. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Yola ML, Eren T, Atar N. Biosens Bioelectron; 2014 Oct 15; 60():277-85. PubMed ID: 24832202 [Abstract] [Full Text] [Related]
14. Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor. Jindal K, Tomar M, Gupta V. Biosens Bioelectron; 2014 May 15; 55():57-65. PubMed ID: 24362079 [Abstract] [Full Text] [Related]
15. Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. Zhu N, Gao H, Xu Q, Lin Y, Su L, Mao L. Biosens Bioelectron; 2010 Feb 15; 25(6):1498-503. PubMed ID: 19963366 [Abstract] [Full Text] [Related]
16. Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Ohno R, Ohnuki H, Wang H, Yokoyama T, Endo H, Tsuya D, Izumi M. Biosens Bioelectron; 2013 Feb 15; 40(1):422-6. PubMed ID: 22917917 [Abstract] [Full Text] [Related]
17. Simple and sensitive electrochemical impedimetric approach towards analysis of biophysical interaction. Gupta AK, Mitra CK. Biochem Biophys Res Commun; 2015 Sep 25; 465(3):471-5. PubMed ID: 26277394 [Abstract] [Full Text] [Related]
18. Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Yang T, Zhou N, Zhang Y, Zhang W, Jiao K, Li G. Biosens Bioelectron; 2009 Mar 15; 24(7):2165-70. PubMed ID: 19131238 [Abstract] [Full Text] [Related]
19. Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film. Xue H, Shen Z, Li C. Biosens Bioelectron; 2005 May 15; 20(11):2330-4. PubMed ID: 15797335 [Abstract] [Full Text] [Related]
20. A one-step electrochemical method for DNA detection that utilizes a peroxidase-mimicking DNAzyme amplified through PCR of target DNA. Won BY, Shin S, Fu R, Shin SC, Cho DY, Park HG. Biosens Bioelectron; 2011 Dec 15; 30(1):73-7. PubMed ID: 21940158 [Abstract] [Full Text] [Related] Page: [Next] [New Search]