These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
598 related items for PubMed ID: 24814724
1. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury. Weishaupt N, Mason AL, Hurd C, May Z, Zmyslowski DC, Galleguillos D, Sipione S, Fouad K. Neuroscience; 2014 Jul 11; 272():65-75. PubMed ID: 24814724 [Abstract] [Full Text] [Related]
2. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Weishaupt N, Hurd C, Wei DZ, Fouad K. Exp Neurol; 2013 Sep 11; 247():241-9. PubMed ID: 23684634 [Abstract] [Full Text] [Related]
3. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury. Weishaupt N, Li S, Di Pardo A, Sipione S, Fouad K. Behav Brain Res; 2013 Feb 15; 239():31-42. PubMed ID: 23131414 [Abstract] [Full Text] [Related]
4. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K. Brain; 2006 Jun 15; 129(Pt 6):1534-45. PubMed ID: 16632552 [Abstract] [Full Text] [Related]
5. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Hagg T, Baker KA, Emsley JG, Tetzlaff W. Neuroscience; 2005 Jun 15; 130(4):875-87. PubMed ID: 15652986 [Abstract] [Full Text] [Related]
6. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD. J Neurosci; 2003 Feb 15; 23(4):1424-31. PubMed ID: 12598631 [Abstract] [Full Text] [Related]
7. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function. Blits B, Dijkhuizen PA, Boer GJ, Verhaagen J. Exp Neurol; 2000 Jul 15; 164(1):25-37. PubMed ID: 10877912 [Abstract] [Full Text] [Related]
8. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. Zhou L, Shine HD. J Neurosci Res; 2003 Oct 15; 74(2):221-6. PubMed ID: 14515351 [Abstract] [Full Text] [Related]
9. Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord. Chen Q, Zhou L, Shine HD. J Neurotrauma; 2006 Aug 15; 23(8):1254-60. PubMed ID: 16928183 [Abstract] [Full Text] [Related]
10. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Piantino J, Burdick JA, Goldberg D, Langer R, Benowitz LI. Exp Neurol; 2006 Oct 15; 201(2):359-67. PubMed ID: 16764857 [Abstract] [Full Text] [Related]
11. Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Houweling DA, Lankhorst AJ, Gispen WH, Bär PR, Joosten EA. Exp Neurol; 1998 Sep 15; 153(1):49-59. PubMed ID: 9743566 [Abstract] [Full Text] [Related]
12. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. J Neurophysiol; 2013 Oct 15; 110(8):1782-92. PubMed ID: 23864374 [Abstract] [Full Text] [Related]
13. Single, high-dose intraspinal injection of chondroitinase reduces glycosaminoglycans in injured spinal cord and promotes corticospinal axonal regrowth after hemisection but not contusion. Iseda T, Okuda T, Kane-Goldsmith N, Mathew M, Ahmed S, Chang YW, Young W, Grumet M. J Neurotrauma; 2008 Apr 15; 25(4):334-49. PubMed ID: 18373483 [Abstract] [Full Text] [Related]
14. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI. Fortun J, Puzis R, Pearse DD, Gage FH, Bunge MB. J Neurotrauma; 2009 Jul 15; 26(7):941-53. PubMed ID: 19275471 [Abstract] [Full Text] [Related]
15. Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury. Nakamura Y, Ueno M, Niehaus JK, Lang RA, Zheng Y, Yoshida Y. J Neurosci; 2021 Dec 15; 41(50):10247-10260. PubMed ID: 34759029 [Abstract] [Full Text] [Related]
16. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Danilov CA, Steward O. Exp Neurol; 2015 Apr 15; 266():147-60. PubMed ID: 25704959 [Abstract] [Full Text] [Related]
17. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury. Kyoto A, Hata K, Yamashita T. Brain Res; 2007 Dec 15; 1186():74-86. PubMed ID: 17996222 [Abstract] [Full Text] [Related]
18. Regulation of axonal regeneration following spinal cord injury in the lamprey. Benes JA, House KN, Burks FN, Conaway KP, Julien DP, Donley JP, Iyamu MA, McClellan AD. J Neurophysiol; 2017 Sep 01; 118(3):1439-1456. PubMed ID: 28469003 [Abstract] [Full Text] [Related]
19. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Nature; 1994 Jan 13; 367(6459):170-3. PubMed ID: 8114912 [Abstract] [Full Text] [Related]
20. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord. Jayaprakash N, Wang Z, Hoeynck B, Krueger N, Kramer A, Balle E, Wheeler DS, Wheeler RA, Blackmore MG. J Neurosci; 2016 May 25; 36(21):5877-90. PubMed ID: 27225775 [Abstract] [Full Text] [Related] Page: [Next] [New Search]