These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 24818139

  • 1. A novel algorithm for detecting protein complexes with the breadth first search.
    Tang X, Wang J, Li M, He Y, Pan Y.
    Biomed Res Int; 2014; 2014():354539. PubMed ID: 24818139
    [Abstract] [Full Text] [Related]

  • 2. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 3. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 4. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P, Ramyachitra D, Banupriya D.
    Gene; 2016 Apr 15; 580(2):144-158. PubMed ID: 26809099
    [Abstract] [Full Text] [Related]

  • 5. An effective approach to detecting both small and large complexes from protein-protein interaction networks.
    Xu B, Wang Y, Wang Z, Zhou J, Zhou S, Guan J.
    BMC Bioinformatics; 2017 Oct 16; 18(Suppl 12):419. PubMed ID: 29072136
    [Abstract] [Full Text] [Related]

  • 6. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Oct 16; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 7. Identifying hierarchical and overlapping protein complexes based on essential protein-protein interactions and "seed-expanding" method.
    Ren J, Zhou W, Wang J.
    Biomed Res Int; 2014 Oct 16; 2014():838714. PubMed ID: 25143945
    [Abstract] [Full Text] [Related]

  • 8. Identification of protein complexes by integrating multiple alignment of protein interaction networks.
    Ma CY, Chen YP, Berger B, Liao CS.
    Bioinformatics; 2017 Jun 01; 33(11):1681-1688. PubMed ID: 28130237
    [Abstract] [Full Text] [Related]

  • 9. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.
    Shen X, Yi L, Jiang X, He T, Yang J, Xie W, Hu P, Hu X.
    PLoS One; 2017 Jun 01; 12(10):e0186134. PubMed ID: 29045465
    [Abstract] [Full Text] [Related]

  • 10. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L, Chan KC.
    BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799
    [Abstract] [Full Text] [Related]

  • 11. False positive reduction in protein-protein interaction predictions using gene ontology annotations.
    Mahdavi MA, Lin YH.
    BMC Bioinformatics; 2007 Jul 23; 8():262. PubMed ID: 17645798
    [Abstract] [Full Text] [Related]

  • 12. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L, Gao L, Li K, Zhao Y, Chiu DK.
    Comput Biol Chem; 2011 Oct 12; 35(5):298-307. PubMed ID: 22000801
    [Abstract] [Full Text] [Related]

  • 13. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 12; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 14. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 12; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 15. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J, Li C, Ye B, Zhong W.
    BMC Bioinformatics; 2012 Jun 25; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [Abstract] [Full Text] [Related]

  • 16. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.
    Mehranfar A, Ghadiri N, Kouhsar M, Golshani A.
    Comput Biol Med; 2017 Sep 01; 88():18-31. PubMed ID: 28672176
    [Abstract] [Full Text] [Related]

  • 17. Identifying protein complexes using hybrid properties.
    Chen L, Shi X, Kong X, Zeng Z, Cai YD.
    J Proteome Res; 2009 Nov 01; 8(11):5212-8. PubMed ID: 19764809
    [Abstract] [Full Text] [Related]

  • 18. Detection of protein complexes from affinity purification/mass spectrometry data.
    Cai B, Wang H, Zheng H, Wang H.
    BMC Syst Biol; 2012 Nov 01; 6 Suppl 3(Suppl 3):S4. PubMed ID: 23282282
    [Abstract] [Full Text] [Related]

  • 19. Impact of low-confidence interactions on computational identification of protein complexes.
    Paul M, Anand A.
    J Bioinform Comput Biol; 2020 Aug 01; 18(4):2050025. PubMed ID: 32757809
    [Abstract] [Full Text] [Related]

  • 20. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J.
    PLoS One; 2017 Aug 01; 12(9):e0183460. PubMed ID: 28937982
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.