These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 24827432

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.
    Ushiyama J, Masakado Y, Fujiwara T, Tsuji T, Hase K, Kimura A, Liu M, Ushiba J.
    J Appl Physiol (1985); 2012 Apr; 112(8):1258-67. PubMed ID: 22302959
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Evidence for beta corticomuscular coherence during human standing balance: Effects of stance width, vision, and support surface.
    Jacobs JV, Wu G, Kelly KM.
    Neuroscience; 2015 Jul 09; 298():1-11. PubMed ID: 25869620
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V, Naranjo JR, Schulte-Mönting J, Omlor W, Huethe F, Kristeva R.
    J Neurophysiol; 2009 Aug 09; 102(2):1115-20. PubMed ID: 19458142
    [Abstract] [Full Text] [Related]

  • 10. Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults.
    Ushiyama J, Suzuki T, Masakado Y, Hase K, Kimura A, Liu M, Ushiba J.
    J Neurophysiol; 2011 Sep 09; 106(3):1379-88. PubMed ID: 21653712
    [Abstract] [Full Text] [Related]

  • 11. Neurophysiological, behavioural and perceptual differences between wrist flexion and extension related to sensorimotor monitoring as shown by corticomuscular coherence.
    Divekar NV, John LR.
    Clin Neurophysiol; 2013 Jan 09; 124(1):136-47. PubMed ID: 22959414
    [Abstract] [Full Text] [Related]

  • 12. Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions.
    Dal Maso F, Longcamp M, Cremoux S, Amarantini D.
    Exp Brain Res; 2017 Oct 09; 235(10):3023-3031. PubMed ID: 28725924
    [Abstract] [Full Text] [Related]

  • 13. Dynamics of corticospinal motor control during overground and treadmill walking in humans.
    Roeder L, Boonstra TW, Smith SS, Kerr GK.
    J Neurophysiol; 2018 Sep 01; 120(3):1017-1031. PubMed ID: 29847229
    [Abstract] [Full Text] [Related]

  • 14. A critical period of corticomuscular and EMG-EMG coherence detection in healthy infants aged 9-25 weeks.
    Ritterband-Rosenbaum A, Herskind A, Li X, Willerslev-Olsen M, Olsen MD, Farmer SF, Nielsen JB.
    J Physiol; 2017 Apr 15; 595(8):2699-2713. PubMed ID: 28004392
    [Abstract] [Full Text] [Related]

  • 15. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
    Kristeva R, Patino L, Omlor W.
    Neuroimage; 2007 Jul 01; 36(3):785-92. PubMed ID: 17493837
    [Abstract] [Full Text] [Related]

  • 16. EEG-EMG coherence changes in postural tasks.
    Masakado Y, Ushiba J, Tsutsumi N, Takahashi Y, Tomita Y, Kimura A, Liu M.
    Electromyogr Clin Neurophysiol; 2008 Jul 01; 48(1):27-33. PubMed ID: 18338532
    [Abstract] [Full Text] [Related]

  • 17. Abnormal cortex-muscle interactions in subjects with X-linked Kallmann's syndrome and mirror movements.
    Farmer SF, Harrison LM, Mayston MJ, Parekh A, James LM, Stephens JA.
    Brain; 2004 Feb 01; 127(Pt 2):385-97. PubMed ID: 14662517
    [Abstract] [Full Text] [Related]

  • 18. Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials.
    Keil J, Timm J, Sanmiguel I, Schulz H, Obleser J, Schönwiesner M.
    J Neurophysiol; 2014 Feb 01; 111(3):513-9. PubMed ID: 24198325
    [Abstract] [Full Text] [Related]

  • 19. Voluntary control of corticomuscular coherence through neurofeedback: a proof-of-principle study in healthy subjects.
    von Carlowitz-Ghori K, Bayraktaroglu Z, Waterstraat G, Curio G, Nikulin VV.
    Neuroscience; 2015 Apr 02; 290():243-54. PubMed ID: 25596321
    [Abstract] [Full Text] [Related]

  • 20. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 02; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.